

ISSN (ONLINE) - 2582-9440

वर्ष 6 अंक 1 जनवरी – जून 2025

आषाढ मास, शुक्ल पक्ष, विक्रम संवत् 2082

Vol. 6 (1) January - June 2025

SWADESHI VIGYAN PATRIKA

स्वदेशी विज्ञान पत्रिका

Nature, Health And Sustainable Development.

**Multilingual Science Magazine Dedicated to the Development
of Swadeshi Vigyan, Integrating Traditional & Modern
Sciences Catering to National Needs and Society**

Published by - Vigyan Bharti, Delhi

प्रकाशक – विज्ञान भारती, दिल्ली

www.swadeshisciences.org

Few Glimpses

विज्ञान भारती के अध्यक्ष कार्यकारी अध्यक्ष एवं एमएनएनआइटी के विभागाध्यक्ष चर्चा करते हुए।

विज्ञान भारती के अध्यक्ष डॉ डी० पी० भट्ट दीप प्रज्वालित करते हुए।

मुख्य अतिथि का स्वागत करते हुए इन्डियन वाटरवर्क एसोसिएशन के अध्यक्ष ई० जी० सी० दुबे जी।

विज्ञान भारती के अध्यक्ष डॉ डी० पी० भट्ट का सम्मान कर्तव्य इन्डियन वाटरवर्क एसोसिएशन के महासचिव प्रो० आर सी वैश्य।

विज्ञान भारती के डॉ अदिकृत कुमार का सम्मान करते हुए अतिथि गण।

इन्डियन भोटर बर्क्स एसोसिएशन के अध्यक्ष का सम्मान कर्तव्य विज्ञान भारतीय अध्यक्ष डॉ डी० पी० भट्ट द्वारा।

संगोष्ठी की स्मारिका का विमोचन करते हुए मन्द्यासिन अतिथिगण।

देश के विभिन्न भागों से आए प्रतिभागी गण।

SWADESHI VIGYAN PATRIKA

स्वदेशी विज्ञान पत्रिका

Nature , Health And Sustainable Development.

SWADESHI VIGYAN PATRIKA SECRETARIAT:

907/1 Chandra Vihar Colony, Jhansi 284002

E-mail: vigyanpatrika@swadeshivigyan.org, swadeshivigyan@swadeshivigyan.org

Website: www.swadeshisciences.org

Bi-annual publication of the Swadeshi Vigyan Patrika (SVP) is an unique effort to bring advances in all aspects of Swadeshi Vigyan - Indigenous Science, Engineering & Technology integrating Traditional & Modern Sciences catering to National needs and Society in large using Bharatiya languages without opposing English. The Editorial Board welcomes original articles / Research papers from experts, researchers & grass root innovators of this country and overseas both and owe no responsibility for the statements and opinions presented by authors. The Editorial Board & staff in its working of examining articles for their publication is assisted, in an Honorary capacity, by several reputed Scientists.

Communication mode for sending contributions in the SVP:

vigyanpatrika@swadeshivigyan.org, swadeshivigyan@swadeshivigyan.org or to Editorial Board members.

Annual Subscription

INR 400/-	\$ 30 (Includes postal expenditure)
-----------	-------------------------------------

Biennial Subscription

INR 700/-	\$ 50 (Includes postal expenditure)
-----------	-------------------------------------

Subscription (Single copy)

INR 200/-	\$ 20 (Includes postal expenditure)
-----------	-------------------------------------

All correspondences related to the Subscription and Advertisements be made in the following address:

Sales & Distribution Officer

Secretariat, SVP

907/1 Chandra Vihar Colony, Jhansi 284002 (India)

Rebate of 15% in Annual subscription will be given for Institutional/Libraries category in India.

All kinds of payments should be made as DD/Local cheque in favour of **“Swadeshi Science Movement of India, Delhi”**. Alternatively, on line payment in the S/B account may be possible on request.

Website : www.swadeshisciences.org

SWADESHI SCIENCE MOVEMENT OF INDIA, DELHI

(ALSO CALLED AS VIGYAN BHARATI, DELHI)

List of Governing Council (GC) & Executive Committee (EC) Members

1.	Prof. Dr. K. I. Vasu Founder National President, SSM/VIBHA Formerly Director, CSIR-CECRI	Patron & GC Member
2.	Padma Shri Dr. P. Pushpangadan Director General, Amity Institute for Herbal & Biotech Products Development & Sr. Vice President, RBEF, New Delhi	Patron & GC Member
3.	Dr. Vijay Shanker Rai	Patron, SSM'D
4.	Mr S.C.Garg Ex Acting Director, CSIR NPL, New Delhi	Advisor
5.	Dr. D. P. Bhatt Formerly Chief Scientist & Head, IPR'M NPL, New Delhi	President
6.	Dr. Vikas Srivastava Professor, Deptt. of Civil Engineering SHUATS, Prayagraj	Working President and Organising secretary
7.	Dr. Prashant Kumar Mishra Member Jharkhand Biodiversity Board Former Head Department of Botany., Biotechnology. Former Director CND and IQAC	Vice President
8.	Dr. Rashmi Sharma Professor, Dept. of Chemistry S.P.C. Govt. College, Ajmer	Vice-President
9.	Sh. Roshan Agrawal CEO, Siddhast IP. Innovations P. Ltd G2 – Vasudev Apartment, Khanpur, Delhi	Gen. Secretary
10.	Sh. V. K. Gupta I/C Workshop, NPL, New Delhi	Treasurer
11.	Dr. Ashutosh Pareek Associate Professor, Department of Sanskrit SPC Govt. College, Ajmer	Joint Secretary
12.	Prof. Sanjay Kumar Sharma GBU Gautam Buddh Nagar	EC Member
13.	Prof. K. Jothivenkatachalam Professor and Head Dept. of Chemistry Uce-Bit Campus Anna University	EC Member

14.	Dr. Amit Ranjan Assistant Professor, Dept of Botany, Vinoba Bhave Univ. Hazaribag	EC Member
15.	Prof Anita Khurana Principal , Govt Girls College , Nasirabad	EC member
16.	Dr. S. Karthikeyan Associate Professor and Head, PG & Research Department of Chemistry, Chikkanna Government Arts College, Tirupur -641602, Tamilnadu, India.	EC Member
17.	Adv. Sh. Harish Kumar 46, EaswaranKoil St., Erode	EC Member
18.	Dr. Vinay Kumar Professor of Physics, Saudi Arabia. Kodesia Building, Nainital Road, Bareilly	EC Member
19.	Sh. Madhukar Swayambhu Research Head & Founder Member Vedic Cownomics (P) Ltd 411, Ground Floor, Shakti Khand-1, Gurudwara Road, Indirapuram, Ghaziabad -201014,	EC Member
20.	Dr. Shakti Suryavanshi Scientists C NIH Roorkee	EC Member
21.	Dr. Ankit Kumar Sharma Lecturer, Department of Civil Engineering, Government Polytechnic, Changipur, Bijnor, U.P. Physical address: Poonam Vihar, Khushalpur Road, Moradabad -244001, Uttar Pradesh	EC Member
22.	Dr. Jaya Sinha Assistant Professor University Department of Clinical Nutrition and Dietetics Vinoba Bhave university Hazaribag, Jharkhand	EC Member

SWADESHI VIGYAN PATRIKA

*Multilingual Science Magazine Dedicated
to the Development of Swadeshi Vigyan,
Integrating Traditional & Modern Sciences Catering to
National Needs and Society*

Vol. 6 (1) January - June 2025

संरक्षक, स्व वि प

Patron, SVP

Dr. D.P. Bhatt

President, SSM'D

Formerly Chief Scientist & Head, IPR'M, CSIR - NPL

मुख्य संपादक

Chief Editor

Dr. Vikas Srivastava

Professor

Department of Civil Engineering, SHUATS

Prayagraj, U.P.

Published by the Vigyan Bharti, Delhi

Secretariat, SVP: 907/1 Chandra Vihar Colony Jhansi 284002, U.P.

Compilation & Design: Sh. Sachin Sharma

Emails: vigyanpatrika@swadeshivigyan.org, swadeshivigyan@swadeshivigyan.org

Website: www.swadeshisciences.org

डॉ० डी० पी० भट्ट
अध्यक्ष, विज्ञान भारती दिल्ली
संस्थापक अध्यक्ष, महाकर्म फाउंडेशन
ग्रेटर नोएडा।

पूर्व मुख्य विज्ञानी एवं विभाग प्रमुख
बौद्धिक संपदा प्रबंधन
सी एस आई आर— राष्ट्रीय भौतिक प्रयोगशाला
भारत सरकार।

Formerly Chief Scientist “G” & Head, IPR’M
CSIR- National Physical Laboratory
Ministry of Science & Technology
Govt. of India

Emails: swadeshivigyan@gmail.com, vigyanbharti2@rediffmail.com

प्राक्कथन

देश में स्वदेशी साइंस मूवमेंट ऑफ इंडिया के नाम से प्रसिद्ध एक बहुचर्चित संस्था विज्ञान भारती ने सांसारिक ज्ञान यानी अपरा विद्या (विज्ञान) व परा विद्या यानी आध्यात्मिक परम विद्या (सर्वोच्च ज्ञान) एवं समृद्ध भाषा की अपनी स्थापित धरोहर की बौपौती का प्रयोग करते हुए उसे आधुनिक विज्ञान अभियांत्रिकी प्रौद्योगिकी शिक्षा और सामाजिक विकास के क्षेत्र में हो रही नई पहलों के साथ समन्वय स्थापित करने का प्रयत्न लंबे समय से जारी रखा है। इस संदर्भ में हमारा मूल उद्देश्य विज्ञान की मौलिकता और तथ्यात्मकता को खोये बिना इन उपलब्धियों को बिना अंग्रेजी के विरोध से स्वभाषा व हिंदी के आधिकारिक प्रयुक्त द्वारा पिछले दशकों में पुस्तकों, सेमीनार प्रकाशनों व ई – स्वदेशी विज्ञान पत्रिका के सूजन द्वारा प्रस्तुत करना संभव हुआ है।

इसी संदर्भ में मुझे यह जानकर हर्ष हुआ है कि महाकुंभ मेला 2025 के उपलक्ष्य में जल व इसके प्रावधान विषय पर आयोजित राष्ट्रीय सम्मेलन में विविध विषयों को समायोजित किया गया व चर्चा के उपरांत चयनित शोध पत्रों को इस अंक में शामिल किया गया है यह भी महत्वपूर्ण रहा कि डीप साइंस ने अलग से कई शोध आर्टिकल भी प्रकाशित करें हैं। यदि हम देश की संस्कृति संस्कार व विकास की बात करते हैं तो भी भाषा का बहुत महत्व है इसलिए नई राष्ट्रीय बौद्धिक संपदा अधिकार नीति (National IPR Policy) 2016 बनाने से पहले भी हमने भारत सरकार को पेटेंट आवेदनों के लिए राज्यों की भाषाओं की प्रासंगिकता से अवगत कराया था और इसका नतीजा बौद्धिक संपदा को बहुभाषी कलॉज 1.2.8 के रूप में आया। इसी संदर्भ में साइंस रिसर्च की बात करें व आज की आईपीआर पॉलिसी व पहले की साइंस पॉलिसी से साइंस पॉलिसी से तुलना करें तो वह दिन जा चुके हैं जब हम सुविधाजनक विलासिता मोड पर प्रोजेक्ट कराते थे व अपना बायोडाटा बढ़ाने के लिए शोध पत्र छापते थे। उदाहरण के लिए गंगा की जगह अमेरिका की मिसिसिपी नदी पर प्रोजेक्ट चलाते थे व नेचर में पेपर छापना अंतिम उद्देश्य रखते थे। लेकिन आज की पॉलिसी के तहत हमें समाज की समस्या को फोकस कर उसकी जरूरतों को देखते हुए प्रोजेक्ट देने होंगे अन्यथा वे अस्वीकृत होंगे। ऐसी तरह हमें सीखाया जाता है कि शोध शुरू करने से पहले व्यापक Prior आर्ट खोज करना है और स्वदेशी Prior Art शोध कई बार ग्लोबल खोज से ज्यादा महत्वपूर्ण भी हो जाता है। जैसे जल संरक्षण व प्रावधान के विषय में तेलंगाना मिशन धन फाउंडेशन कुहल सिस्टम मध्य प्रदेश, गुजरात, राजस्थान, महाराष्ट्र, कर्नाटक आदि में कई ट्रेडिशनल और आधुनिकता की पहल। नदियों में प्रदूषण के तहत चाहे प्रयागराज हो या वाराणसी हमें पता है कि कितने नाले गंगा में गिरते हैं यद्यपि सीवेज उपचार यंत्र लगाये गये हैं अभी भी गंदे नालों का गिरना जारी है जिस पर भी आगे शोध व काम करने की जरूरत काफी है।

यद्यपि ग्रामीण और शहरी क्षेत्रों में नल से पानी पहुँचाने की दिशा में महत्वपूर्ण प्रगति हुई है व भूजल पर अत्यधिक निर्भरता, रासायनिक संदूषण (जैसे फ्लोराइड और आर्सेनिक) और जलवायु परिवर्तन के कारण पानी के तनाव जैसी चुनौतियाँ बनी हुई हैं, इन चुनौतियों का सामना करने के लिए, वर्षा जल संचयन, पानी के पुनर्वर्कण और एकीकृत जल संसाधन प्रबंधन जैसे समाधानों पर ध्यान केंद्रित करना आवश्यक है। साथ में पेयजल तक पहुँच और सतत विकास का संबंध गहरा है, इसलिए आत्मनिर्भरता लाने हेतु सतत विकास के मार्ग पर बढ़ने के लिए, किस प्रकार हम अपने प्राकृतिक संसाधनों का उपयोग कर नए विचारों को दृष्टिगत करते हुए स्वदेशी साइंस मूवमेंट व समान संस्थाओं द्वारा निर्धारित मानदंडों के अनुसार समुच्चय भारतवर्ष से एकत्रित सरकारी एवं निजी क्षेत्रों के वैज्ञानिक, छात्र, युवा, कृषक एवं तृणमूल अन्येषक विशेष रूप से स्वभाषा में अपने शोध कार्य एवं विचार निरन्तर व्यक्त करेंगे।

इस अवसर पर प्रतिभाओं के इस कुंभ से प्रकाशित बहुभाषीय अंक निश्चित रूप से मील का पत्थर सिद्ध होगा, ऐसी मुझे आशा है। विभा दिल्ली को परिवार का विशेषतः इसके सर्वोच्च नेतृत्व का प्यार व समर्थन निर्विवाद सदैव रहा है, इसका मुख्य कारण हमारी टीम का कार्य के प्रति समर्पण, कार्य उत्कृष्टता, ईमानदारी व पारदर्शी छवि के केन्द्रीभूत मानदण्डों को स्थापित करना और उनके निष्पादन को विश्व-व्यापी बनाना है, जिसके लिए सभी साझेदारों को साधुवाद।

दिनांक 30.06.2025

Greater Noida

डॉ देवेन्द्र प्रकाश भट्ट

www.swadeshisciences.org

SWADESHI VIGYAN PATRIKA

संपादक मण्डल **Editorial Board**

1. **Dr. Rashmi Sharma**
Professor, Chemistry
S.P.C. Govt. College, Ajmer, Rajasthan
2. **Shri. Roshan Agarwal**
CEO, Siddhast IP Innovation Pvt Ltd
Gen. Secretary SSM'D
907/1 Chandra Vihar Colony Jhansi, U.P.
3. **Dr. Ashutosh Pareek**
Associate Professor, Sanskrit
S.P.C. Govt. College, Ajmer, Rajasthan
4. **Dr. S. Karthikeyan**
Associate Professor
PG & Research Department of Chemistry
Chikkanna Govt. Arts College, Thirupur, T. N.
5. **Dr Atul Agarwal**
Retd. Chief Scientist
CBRI, Roorkee, Uttarakhand
6. **Dr. Kulwant Singh**
Scientist H
BARC, Mumbai, Maharashtra
7. **Dr. T. P. Ijinu**
Young Scientist
Amity Institute for Herbal and Biotech Products
Development, Thiruvananthapuram, Kerala
8. **Dr. Prashant Kumar Mishra**
Former Director, Internal Quality Assurance Cell
Director, Deptt. of Clinical Nutrition and Dietetics &
Head, Department of Biotechnology
Vinoba Bhave University, Hazaribag

सम्पादकीय

१४४ वर्षोंकी बहुप्रतिक्षित महाकुम्भ २०२५ के दौरान १५ फरवरी २०२५ को तीर्थराज प्रयागराज स्वदेशी साइन्स मूवमेन्ट ऑफ इन्डिया Indian Water Works Association एवं मोतीलाल नेहरू राष्ट्रीय प्रतियोगी संस्थान इलाहाबाद प्रयागराज के संयुक्त तत्त्वधान मे आयोजित आपूर्ति जल एवं आपशिष्ट जल के प्रबन्धन एवं आधारभूत संरचना के प्रति सतत एवं समग्र दृष्टिकोण पर राष्ट्रीय संगोष्ठी के उपरान्त इस अंक का प्रकाशन निसन्देह गौरवशाली क्षण है। प्रस्तुत अंक महाकुम्भ २०२५ उपरोक्त राष्ट्रीय संगोष्ठी एवं भारतीय ज्ञान पद्धति को समर्पित है। कुंभ स्नान का धार्मिक महत्व है, लेकिन इसके स्वास्थ्य संबंधी पहलू भी हैं, जिनमें धार्मिक विश्वास, आध्यात्मिक लाभ और शारीरिक स्वास्थ्य शामिल हैं। धार्मिक रूप से, कुंभ स्नान को पापों से मुक्ति और आध्यात्मिक शुद्धिकरण माना जाता है, वैज्ञानिक दृष्टिकोण से, यह खगोलीय, भू-चुंबकीय और प्राकृतिक कारकों का संयोजन है, जैसे कि ग्रहों की स्थिति और नदियों के खनिज युक्त जल। कल्पवास और अन्य अनुष्ठानों के माध्यम से आध्यात्मिक अनुशासन और एकाग्रता को बढ़ावा मिलता है। कुंभ मेला उन चार स्थानों पर आयोजित होता है जो पृथ्वी के अक्षांश ०° और ३०°३० के बीच स्थित हैं। यहाँ एक विशेष समय पर खगोलीय पिंडों के संरेखण के कारण एक विशेष प्रकार का ब्रह्मांडीय ऊर्जा का संगम महसूस होता है। गंगा नदी में हिमालयी खनिजों और जड़ी-बूटियों के कारण औषधीय गुण होते हैं। गंगाजल में सल्फर की उपस्थिति के कारण यह लंबे समय तक खराब नहीं होता और इसमें हैजा, प्लेग और मलेरिया जैसे कीटाणुओं को नष्ट करने की क्षमता होती है। कुंभ स्नान को कई लोग मानसिक और शारीरिक स्वास्थ्य के लिए फायदेमंद मानते हैं। यह शरीर के चक्रों को नियमित करने और भावनात्मक और मनोवैज्ञानिक शांति प्रदान करने में मदद करता है। वैज्ञानिक मानते हैं कि कुंभ स्नान एक प्राकृतिक वैज्ञानिक प्रक्रिया है जो धार्मिक विश्वासों से परे है और स्वास्थ्य को बढ़ावा देती है।

वैदिक ग्रन्थ की रचना गहन चिन्तन और नितान्त वैज्ञानिक आधार पर कि गई है आधुनिक विज्ञान की जननी भी भारतीय धर्म विज्ञान है जो अरब देशों से होते हैं पश्चिमी देशों तक पहुँची आधुनिक विज्ञान का स्वरूप ग्रहण करके विश्व में प्रतिष्ठित हुई भारत की गौरवशाली सांस्कृतिक परम्परा आज के इस जीवन पद्धति के कारण बढ़ रहे संकटों के लिए राम बाण है। वर्तमान मे भारत गेंहू धान गन्ने सहित तमाम कृषि जिन्सों का दुनिया मे प्रमुख उत्पादक देश बन गया है। दुनिया के क्षेत्रफल का दो प्रतिशत भूभाग रखने वाला भारत आज ना केवल अपने यहाँ निवास करने वाली विश्व की लगभग १६ प्रतिशत जनसंख्या का पोषण कर रहा है अपितु अनेक उत्पादन कि आपूर्ति कर वैश्विक तन्त्र पर दबाव को घटाने मे भी सहयोग दे रहा है। उपरोक्त वर्णित संगोष्ठी कि चर्चा मे जलवायु परिवर्तन आधारभूत सामग्री एवं निर्माण आपशिष्ट प्रबन्धन अल्प लागत निर्माण जल संरक्षण एवं अन्य के विषयों पर चर्चा हुई उपरोक्त चर्चा के फलस्वरूप जो परिणाम शोधपत्र के रूप में प्रस्तुत के उनमें से कुछ को इस अंक में प्रकाशित किया जा रहा है।

भारतीय स्वदेशी विज्ञान आंदोलन के अंतर्गत डॉ वासु की प्रेरणा एवं डॉ भट्ट के नेतृत्व में विगत ३ दशकों से चलाये जा रहे अभियान की श्रृंखला में इस पत्रिका का वर्तमान अंक का प्रकाशन भारत के विभिन्न क्षेत्रों एवं भाषाओं से स्वेदशी विज्ञान एवं समाज को जोड़कर प्रबुद्ध लेखकों के विचार, चिंतन, शोधों एवं प्रयोगों को जनमानस तक पहुँचाने एवं युवा लेखकों के मौलिक विचारों एवं शोधों को विस्तार देने तथा प्रचारित करने हेतु प्लेटफॉर्म प्रदान करने का प्रयास है। इस अंक में प्रकृति का वरदान आंवला, जलीय मोडलिंग, योग एवं स्वास्थ्य, जल एवं अपशिष्ट प्रबन्धन, जल सम्बन्धित इन्फ्रास्ट्रक्चर का जीवन चक्र मूल्यांकन से सम्बद्धित लेख प्रस्तुत है। विज्ञान भारती दिल्ली की कार्यकारिणी, वरिष्ठ सदस्यों एवं पत्रिका के सम्पादकीय मंडल को मुझे यह अवसर देने हेतु हृदय से आभार। साथ ही सम्मानित लेखकों को उनके सक्रिय योगदान हेतु कोटि धन्यवाद। इस पत्रिका के प्रकाशन में शामिल सभी जनों का उनके योगदान हेतु हृदय से आभार। त्रुटियों के संशोधन एवं पाठकों के प्रेरणास्पद सुझाव प्रोत्साहन हेतु सदैव आमंत्रित हैं।

शुभकामनाओं सहित सादर —

दिनांक 30.06.2025

प्रयागराज

विकास श्रीवास्तव

विकास श्रीवास्तव
मुख्य संपादक

स्वदेशी विज्ञान पत्रिका

Swadeshi Vigyan Patrika

Contents / विषय सूची

	Page Nos.
1. Governing Council & EC	01
2. प्राक्कथन	03
3. Editorial Board	05
4. संपादकीय	06
5. स्तम्भ	08
6. डॉ. मनोज कुमार रावत	10
7. Mr. Durgam Vikas Mr. Pinninti Pavain Kumar Reddy	14
8. Mrs. Navya Mistry Mr. Shekhar Ramachandran	21
9. डॉ. प्रगति	29
10. Mr. Ashish Shukla Dr. Satyendra Nath	32
11. Mr. Ish Kuma Mr. Vikas Srivastava	38
12. डॉ. राखी खंडेलवाल डॉ. श्याम सुंदर शर्मा	42
13. Dr. Manoj Kumar Rawat	45
14. Guideline For Authors	53
15. Membership Form	55

संस्कृत, संस्कृति और ज्ञान-विज्ञान : एक अनुपम संगम

भाग 11

वैशिक प्रगति में सतत विकास के आर्श-सूत्र

“सत्यं बृहद् ऋतमुग्रं दीक्षा तपो ब्रह्म यज्ञः पृथिवीं धारयन्ति ।

सा नो भूतस्य भव्यस्य पत्न्युरुं लोकं पृथिवी नः कृणोतुं”

अथर्ववेद 12.1.1

अथर्ववेद के पृथिवी सूत्र का यह वैदिक स्तोत्र आधुनिक युग में सतत विकास और धरती के भविष्य को सुरक्षित, संरक्षित और संवर्धित करने के लिए एक समुचित निर्देश-सूत्र है। आज जब मानवता विकास के बहिर्मुखी और तीव्रतम पथ पर अग्रसर है, तब वही प्राचीन शब्द हमें चेतावनी और मार्गदर्शन दोनों देते हैं। वैज्ञानिक दर्शन ने भी बार-बार यही चेतावनी दी है कि विकास की पुरानी लय को बदलना होगा। आइनस्टीन ने कहा था, “We cannot solve our problems with the same thinking we used when we created them” (हम वे समस्याएँ उसी सोच से हल नहीं कर सकते, जिस सोच से हमने उन्हें जन्म दिया)। हमें आधुनिक विज्ञान-विकास की सुई को आर्श-दृष्टि के आयाम रूपी तराजू पर रखकर परखना आवश्यक हो गया है कि कैसे भारतीय ज्ञान-परम्परा में अभियक्त सिद्धान्त और नैतिक परामर्श वैशिक सतत विकास के सच्चे पोषक और मार्गदर्शक बन सकते हैं।

आर्श तत्त्व : छह धारकतत्त्व और उनका आधुनिक चिन्तन

अथर्ववेद में बताए गए छह धारक-तत्त्व – “बृहत् सत्य, उग्र ऋत, दीक्षा, तप, ब्रह्म और यज्ञ” प्रतीकात्मक होने के साथ-साथ व्यावहारिक भी हैं। आइए इन्हें समकालीन संदर्भ में समझेंगे—

* **बृहत् सत्य** – पारदर्शिता, नैतिकता और आवश्यकता रूपी सत्यता पर आधारित लक्ष्य। आज “विकास” का मापांक केवल GDP या कच्चे संसाधनों की उपलब्धि पर है पर यदि विकास मापदण्ड सत्य से विमुख हों तो वह अस्थायी और पराधीन बनता है। महात्मा गांधी की बात सरल और स्पष्ट है— “Earth can provide enough to satisfy every man's need, but not one man's greed” अर्थात् आवश्यकता-आधारित जीवन और लालच का नियन्त्रण सततता की पहली कुंजी है।

* **उग्र ऋत** – प्रकृति के नियम, पारिस्थितिकी का संतुलन। आधुनिक विज्ञान ने जब ऋत (प्रकृति के नियम) को जाना, तब मानव ने बहुत-सी शक्ति पाई परन्तु नियमों का उल्लंघन करने पर ही विक्षोभ और विपदाएँ जलवायु परिवर्तन, जैव विविधता ह्वास, भूमि क्षरण आदि के रूप में आई हैं। ऋत का सम्मान ही दीर्घकालिक जीवन-धारा की सुरक्षा है।

* **दीक्षा** – अनुषासन और कर्तव्य के द्वारा अधिकार की प्राप्ति। अधिकारों का अर्थ तब ही स्पष्ट होता है जब उसके साथ कर्तव्य जुड़े हों। दीक्षा का तात्पर्य है – ज्ञान के साथ चरित्र, अधिकार के साथ जिम्मेदारी। लोकतंत्र और विकास तभी टिकते हैं जब नागरिकों में दीक्षा का तत्त्व विद्यमान हो। सतत विकास के लिए अधिकार से पूर्व कर्तव्य के महत्व को स्पष्ट किया है।

* **तप** – संयम, लगन और परिश्रम। तप वैदिक-परम्परा में आत्मसंयम और दीर्घदृष्टि का प्रतीक है। उपभोग-संस्कृति को नियंत्रित करने और संसाधनों के न्यायोचित वितरण के लिए तप आवश्यक है।

* **ब्रह्म** – समग्र ज्ञान, दर्शन और विवेक। विज्ञान-प्रगति तभी सौम्य और मानव-केन्द्रित बनेगी जब उसका मार्गदर्शन ब्रह्म-बोध (नैतिक, दार्शनिक विवेक) द्वारा किया जाए। अतः ब्रह्मरूपी ज्ञान का चिन्तन, मनन और निदिध्यासन परम आवश्यक है।

* **यज्ञ** – यज्ञ से तात्पर्य परोपकार, समाजकल्याण और संसाधन के पुनरुत्पादन की क्रिया से है। अतः कहा गया है— “यज्ञो वै श्रेष्ठतमं कर्म”। यज्ञ केवल अग्नि-कुण्ड नहीं यह वह सामाजिक व्यवस्था है जिसमें सर्वजन एवं उपभोग का चक्र संतुलित रूप से चलता है – आधुनिक शब्दों में इसे ‘सर्कुलर इकोनॉमी’ और सामुदायिक सहभागिता कह सकते हैं।

भारतीय चिन्तन में ‘धारणक्षम’ का वास्तविक अर्थ धारणक्षम (Sustainability) केवल तकनीकी शब्द नहीं भारतीय दर्शन में यह जीवन-आधार को संरक्षित करने की सजीव अवधारणा है। कुछ मूल सिद्धान्त जो यहाँ से प्राप्त किए जा सकते हैं—

1. **सहजीवन (Interconnectedness)** – “प्रकृति में कुछ भी अकेला नहीं” – यह वैदिक तथा बौद्धिक चेतना का मूल है। मानव, वन, जल, वायु और जीव एक जाल हैं किसी एक धातु का विघटन सम्पूर्ण तंत्र को प्रभावित करता है।

2. **मितव्ययिता (Moderation)** – अति निशेधय जितना होना चाहिए उतना ही। यह उपभोग-नियन्त्रण और आवश्यकता-निर्धारण का मार्ग दिखाता है।

3. **कर्तव्यपरक जीवन (Duty & centric living)** – अधिकारों के साथ कर्तव्य का सम्यक् समायोजन जीवन को सम्यक् दिशा एवं सुस्पष्ट चिन्तन प्रदान करता है।

4. **लोक-हित पर बल (Collective welfare)** – खुद के लाभ के साथ-साथ समुदाय और पृथ्वी-हित का समन्वय दीर्घकालीन विकास के मार्ग को प्रशस्त करता है।

5. **दीर्घकालिक लक्ष्य (Long term vision)** – अल्पकालिक लाभ की चाह में दीर्घकालिक संकट उत्पन्न करना भारतीय तर्क-निन्दित है। पर्यावरण लेखिका राचेल कार्सन ने कहा, “In nature nothing exists alone” इन विचारों का मेल वैदिक-नैतिकता से हमारे लिए स्पष्ट निष्कर्ष देता है कि बड़ा या तेज विकास स्वयं में लक्ष्य नहीं, बल्कि संतुलित, न्यायसंगत और सामुदायिक समृद्धि लक्ष्य होनी चाहिए। भारत की अपनी विचारधाराएँ स्वावलम्बन, सीमित उपभोग, ग्रामस्वराज्य की कल्पना, दीनदयाल उपाध्याय का समग्र मानवाद और स्वामी दयानन्द के ‘वेदों की ओर लौटो’ ये सभी बताते हैं कि विकास का मार्ग यदि सामूहिकता, सर्वोपयोगी, साधुत्व एवं व्यापक दृष्टि और प्रकृति-सम्मान पर टिका हो तो ही वह सतत बन सकता है।

वर्तमान विश्व – युद्ध की आशंका और अंधाधुन दौड़ से उपजा अविश्वास

21वीं सदी की वैश्विक राजनीति में प्रतिस्पर्धा और असमंजस बढ़े हैं। संसाधनों के लिए लड़ाई एवं साम्राज्यवाद, रणनीतिक दबाव और आर्थिक श्रेष्ठता की होड़ ने राष्ट्रों के बीच अविश्वास का वातावरण पैदा कर दिया है। युद्ध या सैन्य संघर्ष की आशंका न केवल तात्कालिक मानवीय मूल्य नष्ट करती है, वरन् दीर्घकालिक संसाधनों और पर्यावरण को भी प्रत्यक्ष या अप्रत्यक्ष रूप से क्षति पहुँचाती है। सेना और हथियारों की कभी न खत्म होने वाली दौड़ में होने वाला खर्च स्वास्थ्य, शिक्षा और पर्यावरण संरक्षण से ही छीना जाता है – यही कारण है कि संरक्षण-विचारक ‘विकास की नैतिकी’ पर बार-बार जोर देते हैं। जब किसी समाज में भरोसा घटता है, तब सहयोग की सम्भावनाएँ सूखती हैं और सब कुछ अपनी-अपनी सुरुंग में फँस जाता है। अतः वैश्विक शांति-प्रयास, सामूहिक सुरक्षा एवं विश्वास-निर्माण ही सतत विकास के लिए अपरिहार्य पूर्वपिक्षाएँ हैं।

भविष्य की धरती कैसी हो – एक वैदिक दृष्टि

यदि हम आर्ष-सूत्रों को आत्मसात् करते हैं तो भविष्य की धरती कुछ इस प्रकार होगी–

- * जैव विविधता समृद्ध होगी य कृषि विविधीकृत और पारिस्थितिक रूप से संवेदनशील होगी।
- * ऊर्जा स्रोत नवीकरणीय और स्थानीय स्तर पर उपलब्ध होंगे बड़े परिमाण के विनाशकारी खनन और जलवायु-विनाशक उद्योगों का स्थान सतत तकनीक और समुदाय-आधारित उत्पादन लेगा।
- * सामाजिक संरचनाएँ अधिक समावेशी होंगी शिक्षा और स्वास्थ्य सबके लिए सुलभ होंगे।
- * अर्थव्यवस्था ‘विकास के गुणांक’ को केवल उत्पादन नहीं बल्कि जीवन-गुणवत्ता, पर्यावरण-स्वास्थ्य तथा सामुदायिक कल्याण से आँकेगी।
- * यह धरती केवल भौतिक रूप से समृद्ध नहीं, बल्कि जीवन-प्राप्ति की गुणवत्ता और आन्तरिक तृप्ति में सम्पन्न होगी।

अतः जीवन को सुविधापूर्ण बनाने के श्रेष्ठ भारतीय उपाय करने होंगे। भारतीय चरित्र में निहित कुछ व्यावहारिक उपाय यथार्थ रूप से जीवन की गुणवत्ता बढ़ा सकते हैं। स्वास्थ्य के स्थायित्व के लिए योग और आयुर्वेद का समेकित प्रयोग, पृथ्वी की उर्वरक्षमता को सतत बनाए रखने के लिए स्थानीय कृषि व कृषि विविधीकरण, पीने योग्य जल की पर्याप्त उपलब्धता के लिए जल संरक्षण की प्राचीन एवं वैज्ञानिक पद्धतियाँ, वायु और प्रकाश के सदुपयोग एवं सामुदायिक-स्पेस के संरक्षण के लिए परम्परागत वास्तु और नगर-नियोजन, “Vocal for local” के द्वारा ग्राम उद्यम और स्थानीय शिल्प को बढ़ावा देने के लिए सामुदायिक अर्थव्यवस्था, अपशिष्ट का पुनः उपयोग, जैव-उद्योगीकरण, खपत-नियन्त्रण के लिए सर्कुलर इकोनॉमी आदि उपाय न केवल जीवन को सुविधाजनक बनाएँगे, बल्कि उसे अर्थपूर्ण और स्थायी भी बनायेंगे।

अतः भारत की आर्ष-विचारधारा, जिसका सार “समुदाय, संयम और सत्यम्” पर टिका है, वैश्विक नीति-निर्माण में एक नैतिक और व्यावहारिक विकल्प प्रस्तुत कर सकती है। यह नेतृत्व केवल धार्मिक या सांस्कृतिक गर्जना नहीं अपितु ज्ञान-आधारित, वैज्ञानिक समझ से परिपूर्ण है। वैश्विक मंच पर यदि भारत ‘लघु, समेकित, और सहजीवी’ मॉडल का प्रस्ताव रखे तो वह केवल आदर्श नहीं, परन्तु व्यावहारिक समाधान भी दे सकता है, विशेषकर उन राष्ट्रों के लिए जो संसाधन-दबाव और सामाजिक असंतुलन में हैं।

अन्त में कह सकते हैं कि विकास की निरन्तर धारा तभी प्रवाहित होगी, जब विकास की सोच व्यापक (holistic) सार्वभौमिक (universal), सर्वसुलभ (Accessible) और सर्वस्वीकार्य (Ethically acceptable) हो। यह चार नाप-तौल केवल नैति-निर्देश नहीं, बल्कि मानवता का नैतिक करार है। यदि हम बृहत् सत्य, उग्र ऋत, दीक्षा, तप, ब्रह्म और यज्ञ – इन आर्ष धारणाओं को अपने व्यक्तिगत जीवन, संस्थागत नीतियों और वैश्विक समझ में स्थान दें, तो धरती का भविष्य सुरक्षित हो सकता है। अन्त में, राम के शब्द याद रखें “अपि स्वर्णमयी लंका न मे लक्ष्मण रोचते। जननी जन्मभूमिष्व स्वर्गादपि गरीयसी।” भौतिक वैभव का मोह हमें अपनी जड़ से अलग करता है पर जब हम अपनी भूमि, अपनी सूझ-बूझ और अपने आचार का सम्मान करेंगे तो ही भविष्य का उज्ज्वल और टिकाऊ विकास संभव है। आधुनिक विज्ञान और प्राचीन आर्ष-बुद्धि का समन्वय – यही हमारी आशा है, यही हमारी जिम्मेदारी है।

इति अलम्
डॉ. आशुतोष पारीक की लेखनी से

आंवला वृक्षः

पारंपरिक भारतीय आयुर्वेदिक औषधियों के लिए प्रकृति का वरदान

डॉ. मनोज कुमार रावत
वनस्पति विज्ञान विभाग

सम्राट पृथ्वीराज चौहान राजकीय महाविद्यालय, अजमेर - राजस्थान
ईमेल: manojrwt4@gmail.com

लेखक परिचय

लेखक वनस्पति विज्ञान के सहआचार्य हैं और वर्तमान में सम्राट पृथ्वीराज चौहान राजकीय महाविद्यालय अजमेर, राजस्थान में कार्यरत हैं। उन्हें 23 वर्षों से अधिक का शिक्षण अनुभव है। उन्होंने महर्षि दयानंद सरस्वती विश्वविद्यालय, अजमेर (राजस्थान) के वनस्पति विज्ञान विभाग के पूर्व विभागाध्यक्ष एवं प्रोफेसर सुरेश कुमार माहना के मार्गदर्शन में अपनी पीएच.डी. पूरी की, जो प्रतिउत्परिवर्तजनिता के क्षेत्र में कार्यरत हैं। उन्होंने साइसर एरिटेनियम (चना) में एम्बिलका ऑफिसिनेलिस (आंवला) और टर्मिनलिया चेबुला (हरड़) के प्राकृतिक फल के सत्त्व की प्रतिउत्परिवर्तजन गतिविधि के क्षेत्र में एक प्रमुख अन्वेषक के रूप में एक लघु शोध परियोजना भी पूरी की है। उनकी रुचि के क्षेत्र पादप आकृति विज्ञान, पादपवर्गिकी, पादपविकृति विज्ञान, सूक्ष्म जीव विज्ञान, आनुवंशिकी और जैव प्रौद्योगिकी हैं।

डॉ. रावत ने एंजियोस्पर्म मोरफोलोजी, एनाटोमी और एंजियोस्पर्म नामक पुस्तके और राष्ट्रीय एवं अंतर्राष्ट्रीय पत्रिकाओं में कई शोध पत्र प्रकाशित किए हैं। जीवन विज्ञान के क्षेत्र में उनके योगदान के लिए, सतना (मध्य प्रदेश) स्थित सोसाइटी ऑफ लाइफ साइंसेज ने उन्हें मानद फेलोशिप (एफ.एस.एल.एससी.) से सम्मानित किया है। उन्होंने कई अंतर्राष्ट्रीय और राष्ट्रीय सम्मेलनों में भाग लिया है और शोध पत्र प्रस्तुत किए हैं।

आंवला वृक्षः एक परिचय

आंवला एक पर्णपाती लघु शुष्क देशीय भारतीय वृक्ष है जो प्राकृतिक रूप से भारत के विभिन्न भागों में पाया जाता है। इसका फल निस्संदेह पोषक तत्वों का भंडार है। यह जड़ी-बूटी बहुमुखी और चमत्कारी स्वास्थ्य लाभों से भरपूर एक छोटा सा बहुत ही स्वादिष्ट फल है। आंवला को भारतीय करौदा भी कहा जाता है। वैश्य, आमलकी, वृथ्य, जातिफल, शिव, धात्रीफल, श्रीफल और अमृतफल इस जड़ी बूटी के विभिन्न पर्यायवाची शब्द हैं। आंवले का वानस्पतिक नाम एम्बिलका ऑफिसिनैलिस सिन. फिलैथस एम्बिलका लिनन. है। यह दुनिया की सबसे प्रसिद्ध जड़ी-बूटी और विटामिन सी से भरपूर खाद्य फल है। आंवला इस विटामिन का सबसे अच्छा प्राकृतिक स्रोत है जो त्वचा को स्वस्थ रखने और शरीर की प्रतिरक्षा प्रणाली को मजबूत करने में मदद करता है। यह एक बहुत अच्छा एंटीऑक्सीडेंट भी है जो उम्र बढ़ने को रोक सकता है और कोशिकीय संरचना को फिर से जीवंत करके इसे लंबे समय तक युवा और स्वस्थ रख सकता है। यह जड़ी-बूटी हमारे शरीर को सर्दी-खांसी जैसी जीवाणु और वायरल बीमारियों से बचाती है।

सामान्य नाम

* धात्री आमलका आदिफला (संस्कृत)	* आंवला, आमलिका, आंवला (हिंदी)
* नेल्ली, मालनेल्ली (तमिल)	* अमलककमु, उसिरिकाई (तेलुगु)
* अमलक, बेट्टाडेनेली (कन्नड़)	* अमली, अंबाला (गुजराती)
* आंवला, अमलकी (बंगाली)	* नेल्ली (मलयालम)
* भारतीय करौदा (अंग्रेजी)	

भौगोलिक वितरण

आंवला विश्व के उष्णकटिबंधीय और उपोष्णकटिबंधीय तथा मध्य प्रदेश के पर्याप्ती जंगलों में प्रचुर मात्रा में प्राकृतिक रूप से उगता है। यह क्षयग्रस्त भूमि जैसे लवण-प्रभावित मिट्टी, लवणीय और शुष्क व अर्ध-शुष्क क्षेत्रों में उग जाता है।

आंवले का वर्गीकरण

- * जगत: प्लांटी
- * वर्ग: डाइकोटिलिडनी
- * कुल: यूर्फोरबिएसी
- * जाति: ऑफिसिनैलिस
- * प्रभाग: एंजियोस्पर्म
- * सिरीज: यूनिसैक्सुएलिज
- * वंश: एम्ब्लिका

वृक्ष की आकृति विज्ञान

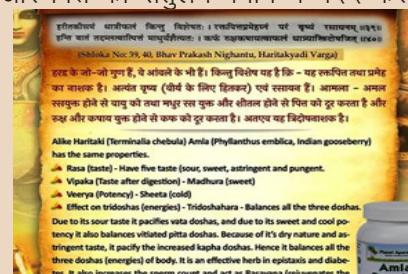
यह वृक्ष आकार में छोटे से मध्यम ऊँचाई का होता है, जो लगभग 1 से 8 मीटर तक होती है (चित्र 1)। मुख्य शाखाओं पर सफेद रंग की छाल होती है। इसकी शाखाएँ सघन जो 10–20 सेमी लंबी होती हैं। पत्तियाँ शाखाओं के साथ घनी हल्के हरे रंग की पिन्नेट आयताकार होती हैं। पूल हरे–पीले रंग के होते हैं जो पत्तियों के नीचे गुच्छे में लगते हैं। फल लगभग गोलाकार जो लगभग 1 से 2 सेंटीमीटर से लेकर 4 से 8 सेंटीमीटर व्यास तक हो सकते हैं। फलों का औसत वजन 60–70 ग्राम होता है और यह हल्के हरे–पीले रंग के जो दिखने में चिकने और कठोर होते हैं। फल छह खड़ी धारियाँ या खांचे वाले होते हैं। फल के केंद्रिय भाग में गुठली पायी जाती हैं जो खाने योग्य नहीं है। गुठली के अंदर बीज पाया जाता है। यह बीज भी फल की तरह छह खड़ी रेशेयुक्त धारियाँ या खांचे वाले होते हैं। ये फल शरद ऋतु में पक कर तैयार हो जाते हैं जिन्हे ऊपरी शाखाओं पर चढ़ने के बाद हाथ से तोड़ा जाता है। आयुर्वेद के अनुसार आंवला के फल स्वाद में खट्टा, कडवा और कसैला होता है और यह काफी रेशेदार होता है।

चित्र 1 आंवला वृक्ष

आंवला की बागवानी

इसकी बागवानी के लिए गर्म और शुष्क जलवायु उपयुक्त है। इसके लिए अच्छी जल निकास वाली, गहरी बलुई-दोमट मिट्टी की आवश्यकता होती है। आंवला की खेती जुलाई से सितंबर के महीने में की जाती है। इस हेतु मई-जून के महीने में 1 मीटर गहरा वर्गाकार गड्ढे खोदें और सूरज की रोशनी में 15-20 दिनों के लिए खुला छोड़ दें। प्रत्येक गड्ढे में 20 किलोग्राम जैविक खाद (कंचुवे की खाद या कम्पोस्ट खाद) 5 किलोग्राम बालू, 3 किलोग्राम जिप्सम, 3 किलोग्राम नीम की खली और 500 ग्राम ट्रायकोडर्मा पाउडर मिलाना चाहिए। कलियों वाले पौधों को 5-5 मीटर के फासले पर नमीयुक्त गड्ढे में रोपाई करें और नियमित रूप से सिंचाई करें। व्यावसायिक खेती के लिए आंवला की कई उन्नत किस्में उपलब्ध हैं, जो बेहतर उपज, फल आकार और रोग प्रतिरोधक क्षमता प्रदान करती हैं। कुछ लोकप्रिय विकल्पों में चकैच्या, बनारसी, फांसिस, कृष्णा, कंचन, नरेंद्र आंवला 6, 7, 10, गंगा एवं भवानीसागर शामिल हैं। आंवला का पेड रोपण के

दो साल बाद फल देना शुरू कर देता है। फलों की तुडाई फरवरी के दौरान की जाती है जब वे हल्के हरे रंग से हल्के हरे-पीले रंग के हो जाते हैं। लगभग 10 वर्ष का एक परिपक्व पेड 50-70 किलोग्राम फल देगा। 1 किलोग्राम में लगभग 15-20 फल होते हैं। अच्छी तरह से रख रखाव किया गया पेड 70 वर्षों तक उपज देता है।


आंवला फल के पारंपरिक औषधीय उपयोग

पारंपरिक भारतीय चिकित्सा पद्धति में सबसे ज्यादा आयुर्वेदिक औषधियों में इस वनौषधि पौधे के सूखे और ताजे फलों का उपयोग किया जाता है। भारतीय प्राचीन ग्रन्थों जैसे चरक संहिता, सुश्रुत संहिता, निधन्टु वेद पुराणों में आंवले को प्रमुख स्थान दिया गया है। आयुर्वेद में आंवला का उपयोग शरीर की तीन प्रमुख शक्तियों (त्रिदोष) अर्थात् वात, पित्त और कफ को संतुलित करने के लिए किया जाता है (चित्र 2)। आंवला सिर्फ एक फल ही नहीं है अपितु यह एंटीऑक्सीडेंट्स, जर्लरी पोषक खनिज तत्वों जैसे कैल्शियम, फॉस्फोरस और आयरन, विटामिन ए और बी-कॉम्प्लेक्स से भरपूर एक छोटा सा पावर हाउस है। ये शरीर को प्राकृतिक सुरक्षा को मजबूत करने और समय के साथ कोशिकाओं को नुकसान पहुँचाने वाले हानिकारक अणुओं, मुक्त कणों से लड़ने के लिए एक बेहतरीन विकल्प है। आयुर्वेद के अनुसार से यह समग्र सिद्धांतों के साथ पूरी तरह मेल खाता है और हमारे संपूर्ण स्वास्थ्य के लिए लाभों का खजाना प्रदान करता है। यह जबरदस्त रोग प्रतिरोधक क्षमता, सुचारू पाचन, प्रसन्न हृदय, दमकती त्वचा, घने काले बाल और यहाँ तक कि बेहतर मानसिक स्वास्थ्य में आंवला वास्तव में एक बहु-कार्यकारी फल चमत्कारी है। इस बहुमुखी सामग्री को अपनी दिनचर्या में शामिल करके, इसकी पूरी क्षमता का लाभ उठा सकते हैं और एक स्वस्थ, संतुलित जीवन का अनुभव कर सकते हैं। पौधे के सभी भागों का उपयोग जिसमें जड़, फल, बीज, पत्ते, छाल और फल-फूल शामिल हैं इनको विभिन्न आयुर्वेदिक औषधियों को बनाने में किया जाता है। जिसमें सबसे उल्लेखनीय रूप से च्यवनप्राश नामक एक प्राचीन हर्बल रसायन में यह प्राथमिक घटक है। आंवले पर किए गए गहन शोध इसके लगभग सभी प्रशंसित गुणों एंटीऑक्सीडेंट, एंटीकारसिनोजेनिक (कैंसर नाशक), एंटीम्यूटॉनाजेनिक (उत्परिवर्तन नाशक), इम्यूनोमॉडुलेटरी, तनाव-रोधी की पुष्टि करते हैं। आंवला फल विटामिन सी का एक बहुत समृद्ध स्रोत है जिसमें एस्कॉर्बिक एसिड की मात्रा सर्वाधिक (700 मिलीग्राम प्रति 100 ग्राम) होती है जो संतरे से 20 गुना ज्यादा है। प्राचीन भारत में यह माना जाता था कि आंवले में सभी रस समाहित होते हैं, इसलिए यह अमरता प्रदान कर सकता है। इसलिए, आंवले को एक “रसायन” माना जाता है जो बुद्धापा रोधी गुणों से युक्त है।

विद्यादामलके सर्वान् रसांल्लवनवर्जितान् ॥ 147 ॥

रुक्षं स्वादु कषायाम्लं कफपित्तहरं परम ।

उपरोक्त श्लोक चरक संहिता के सूत्र स्थान में कुल 30 अध्याय हैं जिसके अध्याय 27 से लिया गया है। इस श्लोक में आंवले की विशेषता बताई गई है कि इसमें नमक को छोड़कर सभी पांचों रस मौजूद हैं। यह कुप और पिच्च का संतलन बनाने में मदद करता है।

चित्र 2 भावप्रकाशनिघण्टु के श्लोक 39 में आंवले के फल का औषधीय उपयोग।

आंवला फल के स्वास्थ्य लाभ

- * **रोग प्रतिरोधक क्षमता:** विटामिन सी से भरपूर मात्रा हो ने के कारण यह आपकी रोग प्रतिरोधक क्षमता को बढ़ा सकता है। यह श्वेत रक्त कोशिकाओं को भी बढ़ाता है जो शरीर से विषाक्त पदार्थों को बाहर निकालने में मदद करते हैं। यह शरीर में प्रवेश करने वाले सूक्ष्मजीवों को मारकर हमारे शरीर को कई रोगों से सुरक्षा प्रदान करता है। यह हमें विभिन्न वायरल, फंगल और बैक्टीरियल संक्रमणों से बचाती है।
- * **हृदय स्वास्थ्य:** यह हमारे हृदय स्वास्थ्य के लिए बहुत अच्छा है। क्योंकि यह हमारे हृदय की धमनियों को मजबूत और मोटा बनाता है।
- * **त्वचा, मसुड़ों, दातों और बालों का स्वास्थ्य:** यह त्वचा, मसुड़ों, दातों और बालों के स्वास्थ्य के लिए भी लाभप्रद हैं जो सीधे ही विटामिन सी के सेवन पर निर्भर करता है। इसकी कमी से स्कर्की रोग हो जाता है। विटामिन सी की भरपूर मात्रा होने के कारण यह कोलेजन को सही तरीके से काम करने में मदद करता है, जिससे हमारी त्वचा, मसुड़े, दात व बालों की गुणवत्ता में सुधार होता है और ये कसी हुई बनती है। यह हमें चमकदार झुर्रीरहित त्वचा जिससे हम युवा दिखते हैं इस प्रकार यह झुर्रियों, काले धेरों और बढ़ती उम्र के अन्य लक्षणों को कम करने में मदद करता है जिसकी आज के समय हमेशा से ख्वाहिश होती हैं। इस हेतु आप फल के पाउडर को दही में मिलाकर फेस मास्क की तरह लगा सकते हैं। बालों के लिए ब्राह्मी आंवला केश तैल का भी उपयोग करते हैं।
- * **सूजन, बुखार कम करने में व रक्त शोधन:** आयुर्वेदिक चिकित्सा प्रणाली के अनुसार, आंवले में मौजूद एंटीऑक्सीडेंट फ्री रेडिकल्स को बेअसर करने में अत्यंत असरदार हैं क्योंकि शरीर में मौजूद फ्री रेडिकल्स जो मूल रूप से सभी बीमारियों की जड़ हैं ये रोग प्रतिरोधक क्षमता को भी कमज़ोर करने के साथ ही सूजन भी पैदा करते हैं अतः ये शरीर में सूजन, बुखार कम करने में व रक्त शोधन में भी मदद करते हैं। यह जड़ी-बूटी हमारे शरीर को सर्दी-खांसी जैसी जीवाणु और वायरल बीमारियों से बचाती है।
- * **बुढ़ापा नाशक:** आंवला अपने एंटीऑक्सीडेंट गुणों के माध्यम से शरीर में फ्री रेडिकल्स की संख्या को कम करता है। यह त्वचा की झुर्रियों, ऑक्सों पर काले धेरों और बढ़ती उम्र के अन्य लक्षणों को कम करने में मदद करता है। यह शरीर को पराबैंगनी विकिरणों से भी बचाता है। इस प्रकार आंवला सबसे अच्छी एंटी-एजिंग जड़ी बूटी है।
- * **स्वस्थ पाचन तंत्र:** आंवला का फल काफी रेशेदार होता है जो स्वस्थ पाचन तंत्र के लिए आवश्यक हैं यह कब्ज, एसिडिटी और पेट के अल्सर से हमें बचाता है।
- * **मधुमेह नाशक:** आंवले में सूक्ष्म तत्वों के भरपूर मात्रा होती है जिसमें क्रोमियम का प्रमुख स्थान है जो मधुमेह नाशक के रूप में कार्य करता है। यह रक्त शर्करा के स्तर को स्थिर रखने के लिए लाभकारी है, जो टाइप 2 मधुमेह वाले लोगों के लिए फायदेमंद हो सकता है।
- * **प्रतिरक्षा में सुधार:** आंवले के फलों में जीवाणुरोधी और कसैले गुण के कारण यह शरीर की प्रतिरक्षा प्रणाली को बेहतर बनाने में मदद करते हैं। आंवला श्वेत रक्त कोशिकाओं को भी बढ़ाता है जो शरीर में प्रवेश करने वाले रोगकारी सूक्ष्मजीवों का भक्षण करके हमारे शरीर को रोगों से बचाने व विषाक्त पदार्थों को बाहर निकालने में मदद करते हैं।
- * **बालों की देखभाल:** प्राचीन काल से ही पारंपरिक भारतीय चिकित्सा पद्धति में बालों को स्वस्थ रखने के लिए आंवला, रीठा, शिक, काई, भृंगराज और गुड्हल के फूल के पाउडर का प्रयोग काफी किया जाता है जो सभी बालों के लिए एक टोनर के रूप में भी जाना जाता है।

यह बालों की जड़ों को मजबूत बनाता है और बालों का रंग काला बनाए रखता है। आंवले के जीवाणुरोधी गुण होने के कारण रुसी से लड़ने में मदद करते हैं। यह रुसी और बालों के झाड़ने को कम करने में भी सहायक है। यह अपने एंटीऑक्सीडेंट और आयरन से भरपूर होने के कारण कई शैंपू और कंडीशनर में इस्तेमाल किया जाता है।

* **तनाव निवारक के रूप में:** विटामिन सी से भरपूर मात्रा होने के कारण आंवला एक बेहतरीन तनाव निवारक है जो नींद लाने और सिरदर्द से राहत दिलाने में मदद करता है।

* **आंख में सुधार:** कैरोटीन की भरपूर मात्रा होने के कारण आंवला दृष्टि संबंधी समस्याओं पर अपने शक्तिशाली प्रभाव के लिए जाना जाता है। आंवले और शहद से बना यह मिश्रण दृष्टि, निकट दृष्टि दोष और मोतियाबिद में सुधार करने में मदद करता है।

* **श्वसन स्वास्थ्य:** यह खांसी, टीबी, गले के संक्रमण और फ्लू को कम करने में मदद करता है। इसका उपयोग आवाज, गले की खराश और गले से संबंधित विभिन्न विकारों (कंठ्य) को ठीक करने के लिए किया जाता है।

* **एनीमिया नाशक:** आयरन की भरपूर मात्रा होने के कारण आंवला एनीमिया को कम करने में मदद करता है।

* **मूत्रवर्धक:** आंवला मूत्रवर्धक भी होता है। इसका मतलब है कि आंवला पेशाब की मात्रा और आवृत्ति बढ़ाने में मदद करता है जिससे शरीर से विषाक्त पदार्थों को बाहर निकालने में मदद मिलती है।

* **मानसिक स्वास्थ्य:** आंवले का दैनिक सेवन तंत्रिका स्वास्थ्य को बेहतर बनाता है जिससे रक्त प्रवाह सुचारू रूप से चलता है। आंवला एकाग्रता और स्मरण शक्ति को बेहतर बनाने में भी मदद करता है। यह मनोभ्रंश और अल्जाइमर जैसी बीमारियों से बचाव में मदद करता है।

* **वजन प्रबंधन :** आंवला उपापचय को बढ़ावा देने के लिए जाना जाता है जिससे शरीर की चर्बी कम करने में मदद मिलती है। दैनिक आहार में आंवला शामिल करने की सलाह दी जाती है।

* **एंटीकारसिनोजेनिक (कैंसर नाशक):** आंवले पर किए गए गहन शोध के आधार पर इसके फल में कैंसर नाशक गुण पाये जाते हैं। इसका फल अनेक पादप-रसायनों, जिनमें प्राकृतिक विटामिन सी के साथ एलाजिक अम्ल, एम्ब्लिकानिन ए, एम्ब्लिकानिन बी, गैलिक अम्ल, फिलांटाइन, क्वेरसेटिन और फिलांटिडाइन शामिल हैं। ये शरीर में मौजूद फ्री रेडिकल्स को बेअसर करने में अत्यंत असरदार हैं जिससे कोशिका सामान्य रूप से कार्य करती हैं।

आंवला के फल का पोषक संघटन

आंवले पर किए गए गहन शोध के आधार पर इसके फल (चित्र 3) में संतरे के फल की तुलना में लगभग 20 गुना अधिक विटामिन सी होता है। प्रत्येक 100 ग्राम खाने योग्य फल में 700 मिलीग्राम विटामिन सी होता है। फलों में नमी, प्रोटीन, वसा, खनिज तत्व, रेशे और कार्बोहाइड्रेट होते हैं। इसमें खनिज तत्व के रूप कैल्शियम, क्रोमियम, फॉस्फोरस, आयरन शामिल हैं। विटामिन सी के अलावा इसमें कैरोटीन, थायमिन और राइबोफ्लेविन भी पाये जाते हैं। आंवला पर हाल ही में किए गए एक अध्ययन में इसके मजबूत एंटीऑक्सीडेंट गुणों का श्रेय इसके छोटे आणविक भार वाले अनेक पादप-रसायनों, जिनमें प्राकृतिक विटामिन सी के साथ एलाजिक अम्ल, एम्ब्लिकानिन ए, एम्ब्लिकानिन बी, गैलिक अम्ल, फिलांटाइन, क्वेरसेटिन और फिलांटिडाइन शामिल हैं को दिया गया है।

चित्र 3 आंवले का फल

आंवला के फलों से बने मूल्यवर्धित उत्पाद

आंवले के फल का उपयोग इसके कई स्वास्थ्य लाभों के कारण इसका उपयोग विभिन्न रूपों में किया जाता है। इसे आंवले के रस, चूर्ण या पूरे ताजे फल, त्रिफला चूर्ण (आंवला, टर्मिनेलिया चेबुला और टी. बेलेरिका का मिश्रण), ब्रह्म रसायन, मधुमेघ चूर्ण, आंवला कैंडी, मुरब्बा, च्यवनप्राश आदि के रूप में इस्तेमाल किया जा सकता है। ये सभी उत्पाद बाजार में भी उपलब्ध हैं। परन्तु इनको घर में भी आसानी से बनाया जा सकता है अतः यहां पर घर में आसानी से बनाई जाने वाली आंवला कैंडी की रेसिपी प्रस्तुत की जा रही है।

आंवला कैंडी बनाने की आसान विधि

सामग्री

- * आंवला 1 किलो
- * चीनी 1 किलो
- * इलायची पाउडर 1 छोटा चम्च
- * काला नमक (स्वाद अनुसार)
- * केसर के धागे (वैकल्पिक) कुछ

बनाने की विधि

सर्वप्रथम 1 किलो स्वरस्थ व ताजा आंवले के बेरी फल जो की आकार में बड़े हो को सीधे ही वृक्ष से तोड़ दिया जाता है इन फलों को अच्छी तरीके से पानी से धो लीजिये ताकि इनकी बाहरी सतह पर धूल मिट्टी आदि हो तो साफ हो जाए इसके बाद इन सभी फलों को साफ कपड़े से पोंछ लेते हैं फिर पॉलिथीन की थैली में बांधकर रेफ्रिजरेटर के फ्रीजर में एक सप्ताह तक रख देते हैं एक सप्ताह के बाद उनको रेफ्रिजरेटर से बाहर निकाला जाता है और एक स्टील के टब में उड़ेल कर खुली धूप में चार घंटे तक रख देते हैं जिससे ये नरम हो जाते हैं अब प्रत्येक फल से फांके अलग-अलग करके गुठली को बाहर निकाल दिया जाता है इसी प्रकार से सभी फलों की फांके बना लेते हैं इसके साथ ही 1 किलो चीनी लेते हैं यदि 5 किलो आंवला फल हे तो 5 किलो चीनी लेते हैं अतः अनुपात 1:1 लिया जाता है फिर फल की फांकों को चीनी की बरनी भर लेते हैं ऊपर से सारी चीनी (स्वाद अनुसार चीनी मिश्रित करते समय काला नमक, इलायची पाउडर और केसर के धागे का भी प्रयोग कर सकते हैं) डाल देते हैं इसे ढक कर एक सप्ताह तक रख देते हैं। इससे चीनी पिघल कर तरल रूप में आ गई है। चाशनी में से आंवले की फांकों को निकाल लें और एक सूती कपड़े पर उड़ेल कर खुली धूप में रोजाना चार घंटे तक 10-15 दिनों सूखने देते हैं सूखने के बाद आंवला कैंडी (चित्र 4) तैयार हो जाती है और इसे साफ-सुधरे और सूखे स्टील के बर्तन में स्टोर करें। आंवला कैंडी बनाने की विधि में फल को किसी भी रूप में गर्म नहीं किया जाता है जिससे इसमें पोषक तत्वों की भरमार रहती है इसलिये यह विधि सबसे सरल व सर्वाधिक उपयोग में ली जाने वाला विधि है इस कैंडी के सूखा होने के कारण इसको कहीं पर भी रख करके उपयोग में ले सकते हैं।

चित्र 4 आंवला कैंडी

निष्कर्ष

आज की दौड़ भाग जिंदगी में मानव को अपने स्वास्थ्य की देखभाल करने का समय नहीं है ये कई घंटों तक बिना रुके अपना काम करते रहते हैं युवा पीढ़ी कई घंटों तक लगातार मोबाइल स्क्रीन में रील्स देखने और बनाने में व्यस्त हैं इस दौड़ भाग तनाव की जिंदगी में यदि थोड़ा बहुत पारंपरिक प्राचीन फल आंवले का उपयोग करें तो यह हमारे शरीर को स्वास्थ्य लाभ पहुंचा सकता है। झटपट कार्यों को छोड़कर आयुर्वेद के प्राचीन ज्ञान को अपनाएँ। उत्तम स्वास्थ्य के मार्ग पर आंवले को अपना सहयोगी बनाएँ। अतः इस पेपर में आंवले का परिचय, भौगोलिक वितरण, आकृति विज्ञान, बागवानी, पारंपरिक औषधीय उपयोग, स्वास्थ्य लाभ, फल का पोषक संघटन व आंवला के फलों से बने मूल्यवर्धित उत्पाद आदि को संक्षिप्त तथा सरल भाषा में प्रस्तुत किया गया जिससे आम मानव जाति इस वृक्ष के प्रति जागरूक हो सके और इसके औषधीय उपयोग, स्वास्थ्य लाभ के बारे सटीक जानकारी मिल सके इसी के साथ आंवले की अधिक संख्या में रौपायी व देखभाल की जायें।

सन्दर्भ

- * डॉ. अल्बर्ट एफ. हिल (2006), आर्थिक वनस्पति विज्ञान पेज नंबर 506 आइ. एस. बी. एन. 0-07-463645-6.
- * राजेन्द्र सिंह रावत (2008), महत्वपूर्ण जड़ी बूटियाँ पेज नंबर 56 आइ. एस. बी. एन. 81-8393-045-एक्स.
- * कृष्ण गोपाल ग्रन्थमाला (2010), रसतन्त्रसार व सिद्धप्रयोग संग्रह (द्वितीय खण्ड), पेज नंबर 254 कृष्ण गोपाल आयुर्वेद भवन द्वारा प्रकाशित पुस्तक।
- * डॉ. वी. सिंह, डॉ. पी. सी. पाण्डे, व डॉ. डी. के. जैन (1994), आवृतबीजी वनस्पति विज्ञान पेज नंबर 225 आइ. एस. बी. एन. 81-85711-047-5.
- * डॉ. एम. के. रावत (2013), एम्बिलका ऑफिसिनैलिस गार्टन और टर्मिनलिया चेबुला रेट्ज के जलीय फलों के अर्क की उत्परिवर्तित साइंसर एरिएटिनम एल में एंटीम्यूटाजेनिक गतिविधि। लघु शोध परियोजना परियोजना, भोपाल (राजस्थान)।
- * डॉ. एस. एल. कोथर (1981), उष्णकटिबंधीय क्षेत्रों में आर्थिक वनस्पति विज्ञान पेज नंबर 374 आइ. एस. बी. एन. 33390-409-5.

HYDROLOGICAL MODELLING OF MUSI RIVER USING HEC-HMS

Durgam Vikas¹, Pinninti Pavain Kumar Reddy²

¹NICMAR University of Construction Studies, Telangana, India.

²Sreenidhi Institute of Science and Technology, Telangana, India.

Email: durgamvikas98@gmail.com

ABSTRACT

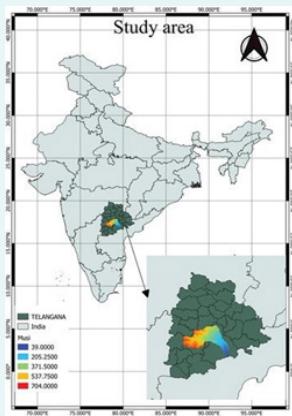
Hydrological modelling system represents a part of hydrologic cycle in a simplified and conceptual way. Hydrological modeling plays a crucial role in understanding and managing water resources. Hydrological models are primarily used for hydrologic prediction and helps in understanding the hydrologic response of a particular catchment area. Hydrological modelling and its operations requires a larger set of temporal and spatial data. Due to lack of data accuracy, efficiency of the model is compromised for hydrological model simulation and its operations like calibration and validation. The weighted curve numbers (CN), a parameter related to infiltration, were then calculated for land uses. The extracted CN value, along with physiographic parameters and rainfall- runoff data, was then imported into the HEC-HMS model to simulate the effect of land use changes on runoff volume. Musi River passing through Hyderabad, India being one of the major sub basins of Krishna River and is catering various demands. In the recent past, it is suffering from severe spatial and temporal water availability problem. Thus, there is a need to quantify the spatial and temporal runoff availability in the Musi River for better water management. A hydrological model helps in understanding of the hydrological processes and useful to measure water resources for effective water resources management. Hydrological cycle describes evaporation, condensation, precipitation and collection of earth water and on again.

Hydrological models have been used in different watersheds across the world. The runoff estimation process is the most complex in nature that depends on the meteorological data and also on the various watershed physical parameters. To generate runoff data for a particular watershed it is needed to find out various parameters related to precipitation models. The HEC-HMS (Centre for Hydrological Engineering and Hydrological Modelling Systems introduced by the US Army Corps of Engineers) is a popularly used watershed model to simulate rainfall runoff process. The Hydrological Modelling can also be an event based or may be continuous. This model is used to predict future impacts of the climate changes on the runoff of River basin and it is used to simulate runoff in ungauged watershed. The Hydrologic Modelling System is designed to simulate the precipitation-runoff processes of watershed systems. The number of hydrological models has been evolved for simulating runoff from the rainfall data in last 10 years i.e. HEC-HMS. HEC-HMS is the hydrological model that has the capability of transforming rainfall into runoff.

KEYWORDS : HEC-HMS, Rainfall-runoff Modelling, Simulation Model, Curve Number (CN), Geographic Information Systems (GIS).

INTRODUCTION

1.1 General : Water is a rare commodity and an important factor for socio-economic development and food security particularly in arid and semi-arid regions. Water shortages and poor water management have appeared to be limitations to the economic development and overall growth of a particular region. For sustainable enlargement and better management of water resources, a complete understanding of hydrologic response of a particular watershed should be known. This leads to a trustworthy representation of the rainfall-runoff relation at various spatial and temporal scales. Effective estimation of runoff values and groundwater recharges from a rainfall event helps in development of all water resources projects i.e. storage reservoirs of surface water, design of hydraulic structures and flood protection structures, hydropower and irrigation projects. Now-a-days, hydrologic response of catchment systems are changing due to rapid increase in urbanization and industrial growth including deforestation, land cover and land use pattern changes. Therefore to evaluate the impact of these changes, Hydrological models have been developed across the world to study the hydrologic behaviour of a catchment system. The input variables used by hydrological models are precipitation characteristics, relative humidity, wind speed, soil type and their properties, topography, watershed properties, hydrogeology and other parameters. HEC-HMS is the computer application created under the Research and Development Program of USACE and was first released by the Hydrologic Engineering Center (HEC) in 1992. The HEC-HMS



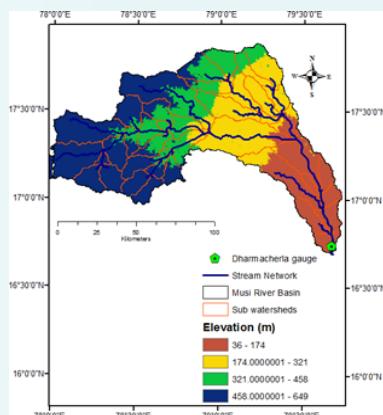
can simulate the rainfall-runoff - routing process both in common as well as in restrained conditions. During rainfall, some portion of water is retained by the soil depending on the degree of saturation, some are absorbed by vegetation, some evaporate and the remainder, which reaches stream channels, is called runoff. Flood is a high stage of river, which is caused by high tides, heavy rainfall and then run off in stream channels and constructed reservoir. Hydrological models have been developed across the world to study and understand the hydrologic response of a catchment (Sintayehu, 2015). To assess and forecast the water availability of river catchment so, it is important to use hydrological models. The HEC-HMS is a popularly used watershed model to simulate rainfall runoff process. The input variables used by hydrological models are rainfall data, runoff data, wind speed, relative humidity, soil type, catchment properties, hydrogeology and other properties.

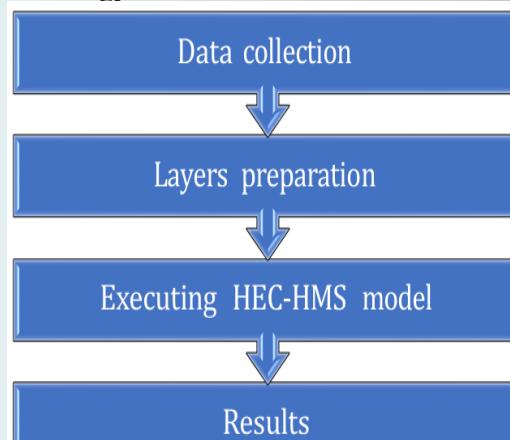
The decision to use HEC-HMS for a hydrological modeling project can be influenced by various factors. We can predict the flood for different rainfall events. The ability to calibrate the model using historical data is a key feature of HEC-HMS. The software is versatile and can be applied to a wide range of hydrological scenarios. It is used for both small and large-scale water shed modelling.

Objective of the Project

* To estimate the run off and resulting flood in the Musi for different rain fall events.

Fig(1): Location map of study area



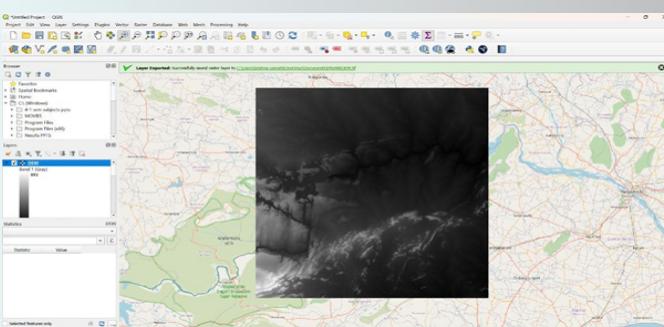

Fig (2): MUSI Watershed

METHODOLOGY

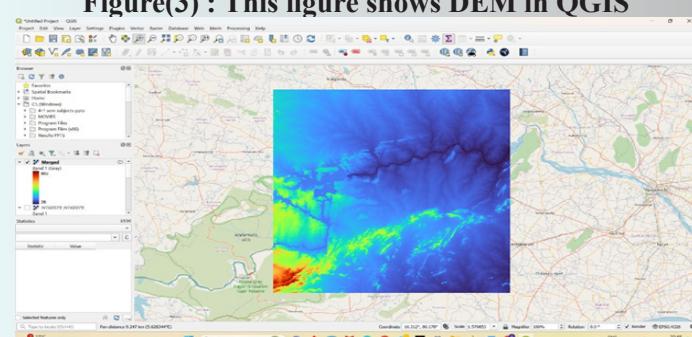
2.1 General

The methodology of the first study on hydrological modelling using HEC-HMS involved several steps. First, the study area was identified and the relevant data was collected. This included information on the topography, land use, soil type, and precipitation patterns of the area. Next, a hydrologic model was developed using HEC-HMS to simulate the flow of water through the study area.

The methodology involves –


The data is collected from different sources and formats which is suitable for the HEC-HMS software.

LAYERS PREPARATION


3.1.1 DEM layer

In order to accurately model and analyze the hydrological characteristics of the Musi River Basin, it is essential to have a Digital Elevation Model (DEM) layer. A DEM is a digital representation of the Earth's surface topography, which provides elevation data for different locations within the basin.

This DEM layer can be processed using Geographic Information Systems (GIS) software.

Figure(3) : This figure shows DEM in QGIS

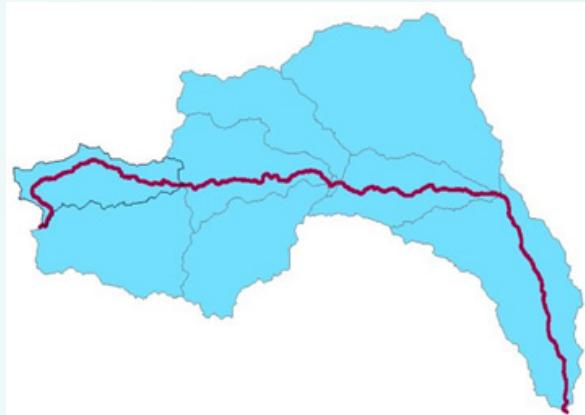
Figure(4) : This figure shows DEM in QGIS

3.1.2 LULC layer

The land use land cover layer of the Musi Basin provides information about the different land use categories and land cover types within the basin. It classifies the land surface into various classes, such as agricultural land, forested areas, urban and built-up areas, water bodies, and barren or wasteland. This layer helps in identifying the spatial distribution and extent of different land use categories, providing insights into the human activities and natural ecosystems present within the basin. The land use land cover layer is valuable for various applications, including land management, natural resource planning, habitat mapping, and environmental impact assessment. It aids in identifying areas prone to erosion, urban expansion, and deforestation, allowing policymakers and land managers to implement appropriate measures for conservation and sustainable land use practices. It is important to regularly update and monitor the land use land cover layer, as it can change over time due to urbanization, agricultural expansion, and other human-induced factors. Regular monitoring ensures the accuracy and relevance of the data for informed decision-making and effective land management strategies within the Musi Basin.

This LULC layer can be processed using ArcGIS software.

To classify the Land Use and Land Cover (LULC) layer in ArcGIS, you can follow these steps: Load the LULC layer into ArcGIS by adding it as a new layer in your workspace. Open the layer's attribute table to understand the available categories or classes. Decide on the classification scheme you want to use. This could be based on your project requirements or the specific goals of your analysis. Choose an appropriate classification method. Some commonly used methods include supervised classification, unsupervised classification, and object-based classification. Apply the chosen classification method to the LULC layer. This involves specifying the input parameters, such as training samples or clustering algorithms, based on the selected classification method. Run the classification process, which will assign each pixel in the LULC layer to a specific land use or land cover class based on the input parameters and classification method. Post-process the classified LULC layer, if necessary, by removing or merging small patches, smoothing edges, or correcting misclassifications. Export the final classified LULC layer as a new dataset or overwrite the existing layer. Land Use and Land Cover (LULC) classification in ArcGIS involves categorizing the Earth's surface into different classes based on the types of land use and land cover present in a given area. The process typically includes remote sensing data, such as satellite imagery or aerial photographs, to classify and map different land cover types.


3.1.3 Soil layer

The soil layer of the Musi Basin provides valuable information about the soil types and properties within the basin. It plays a significant role in understanding the hydrological processes, nutrient availability, and agricultural potential of the region. The soil layer can be obtained through various sources, such as soil surveys, soil sampling, and laboratory analysis. It provides data on important soil characteristics, including soil texture, organic matter content, soil moisture retention capacity, and permeability. The soil types within the Musi Basin can vary depending on factors such as parent material, climate, vegetation, and land use practices. Common soil types found within the basin include sandy soils, clayey soils, loamy soils, and black cotton soils. Each soil type has its own unique characteristics and affects the water-holding capacity and drainage characteristics of the land. The soil layer is essential for hydrological modeling, as it helps in estimating parameters related to infiltration, evapotranspiration, and groundwater recharge. It also provides valuable information for agricultural planning, crop selection, and soil fertility management practices. This Soil layer can be processed using QGIS and ArcGIS software. Find reliable sources for soil data, such as national or regional soil databases, online portals, or specialized organizations. Download the desired soil data in a compatible format, such as shapefile, geodatabase, or CSV. Open QGIS and create a new project or open an existing one. Use the "Add Vector Layer" or "Add Delimited Text Layer" tool to import the soil data into your QGIS project. Select the appropriate file or database and choose the correct coordinate reference system (CRS) for the soil data. Once the soil layer is loaded, right-click on the layer in the "Layers" panel and go to "Properties". In the "Symbology" tab, choose the desired style for representing the soil attributes. For example, you can use categorized symbols based on soil type or continuous color ramp based on soil properties. Adjust the symbology settings, such as color, size, or transparency, as needed to enhance the visualization. In the "Symbology" tab, choose the desired style for representing the soil attributes. For example, you can use categorized symbols based on soil type or continuous color ramp based on soil properties. Adjust the symbology settings, such as color, size, or transparency, as needed to enhance the visualization. If you want to add labels to your soil layer, go to the "Labels" tab in the layer properties. Enable labeling and choose the attribute field containing the soil names or relevant information to display as labels. Customize the label appearance, placement, and format according to your preferences. Utilize ArcGIS tools and functionalities to perform spatial analysis on the soil layer, such as buffering, clipping, or overlay operations with other layers. Generate derived soil attributes or extract specific soil classes based on your analytical objectives. If you need to use the soil layer outside of ArcGIS, you can export it to a desired format. Right-click on the layer and select "Export" or "Save As" to save the layer as a new file.

DELINEATION OF WATERSHED

The process of delineating a drainage basin involves identifying the boundaries of a specific catchment area where all surface water runoff converges into a common outlet, usually a river or a lake. It is an important step in hydrological analysis and watershed management, as it helps in understanding the flow of water within a given area and evaluating the impacts of land use and land cover changes on water resources. Watersheds can be delineated from a DEM, and this can be processed by ArcGIS.

Figure : This figure shows delineation of MUSI river in ArcGIS

3.1.4 Curve Number (CN) layer

This CN layer is classified by using ArcGIS.

The CN is employed in estimating direct runoff or rainfall excess, which is a crucial component in hydrological modeling. In hydrological modeling, the curve number method is used to estimate the amount of rainfall that is converted into runoff. The curve number (CN) represents the combined effect of several factors, including soil type, land use, and land cover, that influence the infiltration capacity and runoff generation of a particular area. It is a dimensionless value ranging from 0 to 100, with lower values indicating better soil infiltration and higher values indicating higher runoff potential. To utilize the curve number in hydrological modeling, data on land use, land cover, and soil type are required. These parameters can be obtained through field measurements, remote sensing data, or existing databases. The curve number is then assigned to different areas within the basin based on these attributes.

3.1.5 Slope layer

ArcGIS provides several tools for analyzing terrain data, including the calculation of slope. The Slope tool in ArcGIS calculates the slope values for each cell in a digital elevation model (DEM) raster. Slope is a measure of the steepness of the terrain at each location and is usually represented as a percentage or an angle. To calculate the slope in ArcGIS, follow these steps:

1. Load your DEM raster into ArcGIS by adding it as a layer to your map.

2. Open the Arc Toolbox window by clicking on the Geoprocessing tab and selecting Arc Toolbox.
3. Expand the Spatial Analyst Tools menu and navigate to the Surface Analysis toolset.
4. Click on the Slope tool to open the Slope dialog box
5. In the Slope dialog box, select the input raster layer from the input surface dropdown menu.
6. Choose an output raster layer name and location for storing the slope results.
7. Specify the slope measurement units as either degree or percentage, depending on your preference.
8. Adjust any other optional settings as desired.
9. Click OK to run the Slope tool.

After running the Slope tool, a new raster layer will be created with the slope values calculated for each cell in the DEM. You can visualize this raster layer as a slope map, where steeper areas are represented by higher slope values. Keep in mind that slope values can vary depending on the resolution and accuracy of your DEM data, as well as the calculations used in the tool. It is always a good practice to validate the results and compare them with field observations if available.

3.2 Executing the HEC-HMS Model

Finally, you have finished perusing the data involved in creating the Musi basin model. To execute the HEC-HMS model, follow these steps:

1. **Prepare input data :** Gather all necessary input data, including precipitation data, watershed characteristics, and land use data. Ensure that the data is in a compatible format, such as ASCII or text files.
2. **Create a new project :** Open HEC-HMS and create a new project file. Set the project properties, such as project name and location.
3. **Define Subbasins And Reaches :** Define the subbasins within your watershed by delineating their boundaries using the available watershed characteristics data. Create reaches within each subbasin to represent the flow paths.
4. **Specify Meteorological Data :** Input the precipitation data for each subbasin. This can include observed data or synthetic rainfall hyetographs. Assign the appropriate rainfall distribution and frequency for the selected precipitation data.
5. **Assign Land Use Data :** Input the land use data for each subbasin. Specify the land use parameters, such as Manning's roughness coefficients, for each land use class.
6. **Define reservoirs And Diversions (If Applicable) :** If there are any reservoirs or diversions within your watershed, define them in the model by specifying their properties and storage capacities.
7. **Set Up Hydrologic Modelling Methods :** Choose the appropriate hydrologic modelling methods, such as unit hydrograph or SCS curve number, for each subbasin. Specify the required parameters and coefficients for the selected methods.

8. Specify Control Specifications Input any control specifications or regulations that affect the flow or operation of the system, such as spillway capacities or outlet restrictions.

9. Run The Model : Perform a trial run of the model to check for errors or inconsistencies. Adjust parameters or input data if necessary. Run the final model simulation to obtain the desired output.

10. Specific Meteorological Data : Input the precipitation data for each subbasin. This can include observed data or synthetic rainfall hyetographs. Assign the appropriate rainfall distribution and frequency for the selected precipitation data.

11. Assign Land Use Data : Input the land use data for each subbasin. Specify the land use parameters, such as Manning's roughness coefficients, for each land use class.

12. Define Reservoirs And Diversions (If Applicable) : If there are any reservoirs or diversions within your watershed, define them in the model by specifying their properties and storage capacities.

13. Set Up Hydrologic Modelling Methods : Choose the appropriate hydrologic modelling methods, such as unit hydrograph or SCS curve number, for each subbasin. Specify the required parameters and coefficients for the selected methods.

14. Specify Control Specifications : Input any control specifications or regulations that affect the flow or operation of the system, such as spillway capacities or outlet restrictions.

15. Run The Model : Perform a trial run of the model to check for errors or inconsistencies. Adjust parameters or input data if necessary. Run the final model simulation to obtain the desired output.

16. Specify Meteorological Data : Input the precipitation data for each subbasin. This can include observed data or synthetic rainfall hyetographs. Assign the appropriate rainfall distribution and frequency for the selected precipitation data.

17. Assign Land Use Data : Input the land use data for each subbasin. Specify the land use parameters, such as Manning's roughness coefficients, for each land use class.

18. Define Reservoirs And Diversions (If Applicable) : If there are any reservoirs or diversions within your watershed, define them in the model by specifying their properties and storage capacities.

19. Set Up Hydrologic Modelling Methods : Choose the appropriate hydrologic modelling methods, such as unit hydrograph or SCS curve number, for each subbasin. Specify the required parameters and coefficients for the selected methods.

20. Specify Control Specifications : Input any control specifications or regulations that affect the flow or operation of the system, such as spillway capacities or outlet restrictions.

21. Run The Model : Perform a trial run of the model to check for errors or inconsistencies. Adjust parameters or input data if necessary. Run the final model simulation to obtain the desired output.

The last step is to run the model.

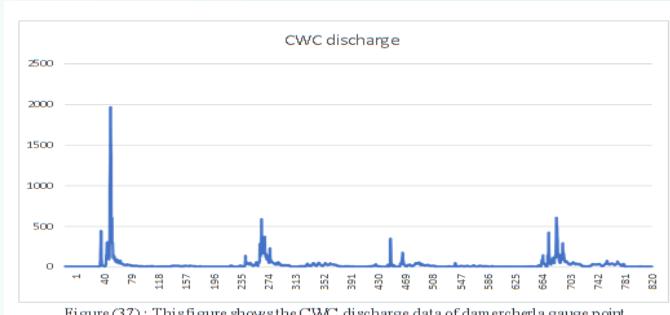
Select Compute > Create Simulation Run. Accept the default name for the run (Run 1), click Next to complete all the steps and finally Click Finish to complete the run. Now to run the model, select Compute > Select Run > Run 1, and then go to Compute > Compute Run [Run 1] to see the following window.

Global Summary Results for Run 'Run 1'		Project: Project HME		Simulation Run Rule 1	
		Start of Run:	03Mar2016, 00:00 <th>Run Model:</th> <td>Base 1</td>	Run Model:	Base 1
		End of Run:	30May2020, 00:00	Model Type:	HEC-HMS
		Compute Type:	GRANULAR	Run Control:	Automatic
Show Elements:	All Elements <th>Volume Units:</th> <td>1000 M3</td> <th>Time Step:</th> <td>10 minutes</td>	Volume Units:	1000 M3	Time Step:	10 minutes
Hydrologic Element	Drainage Area (KM2)	Peak Discharge (M3/S)	Time of Peak	Volume (MM)	Sorting: Alphabetic
Reach-1	423.2	242.3	23 September 2016, 20:00	242.3	
Reach-2		1237.8	24 September 2016, 20:00		
Site-1		1589.8	24 September 2016, 20:00		
Source-1		0.0	19 May 2016, 00:00		
Subbasin-1	80.1	242.3	23 September 2016, 20:00	242.3	
Subbasin-2	1462.2	452.0	12 November 2016, 20:00	2742.94	
Subbasin-3	1712.6	277.8	25 September 2016, 20:00	2462.20	
Subbasin-4	1160.3	521.5	4 October 2016, 20:00	2700.35	
Subbasin-5	10.8	282.5	14 September 2016, 20:00	280.98	
Subbasin-6	16.4	4.0	25 September 2016, 20:00	2042.40	
Subbasin-7	277.7	458.7	26 September 2016, 20:00	2096.14	
Subbasin-8	901.8	258.8	23 July 2017, 24:00	2729.00	
Subbasin-9	2079.1	553.6	22 July 2017, 24:00	2623.81	

4.RESULTS & DISCUSSIONS

4.1 General : The HEC-HMS allows you to view results in tabular or graphical form.

We gave precipitation daily data from 01/06/2016 to 31/05/2020. The peak rainfall occurred on 19th September is 48mm.



The peak discharge is 1589 m³/s It is occurred on September 25th, 2016. Through analyzing the reviewed articles, it can be concluded that the HEC-HMS model predictions accuracy is dependent on the quality of input data, the parameterization of the model, as well as the availability of monitoring data during the simulation periods for performing calibration procedures. Many the reviewed works relied only on streamflow for model calibration, mainly due to lack of other observed data.

4.2 HEC-HMS Model Results : The results from the HEC-HMS model simulation provide valuable insights into the behavior of the watershed and its hydrologic response. After running the HEC-HMS model and completing the simulation, you can analyze the results to ensure deep and clear understanding into the hydrological behavior of the watershed.

Examine the generated hydrographs for each subbasin or reach. Hydrographs show the variation of flow over time, illustrating how the watershed responds to precipitation events. Identify the peak flow values in the hydrographs. Peak flow represents the maximum discharge rate during a storm event and is crucial for designing hydraulic structures and assessing flood risks. Determine the time it takes for the flow to reach its maximum value (time to peak). This parameter is essential for understanding the timing of peak flows within the watershed. Analyze the volume of runoff generated during

the simulation. This information is valuable for water resource management and understanding the water balance in the watershed. If applicable, compare the model results with observed data from the field. The model results can be used to analyze the effect of different land use scenarios on the hydrologic response of the watershed. By inputting alternative land use data, the model can generate hydrographs that allow for comparison and assessment of the impact of land use changes on flooding and runoff patterns. Calibration involves adjusting model parameters to improve the match between simulated and observed data, while validation assesses the model's performance on independent datasets. Create graphical representations of the results using plots, charts, and maps. Visualization can enhance the understanding of complex hydrological processes. Export the results in various formats for further analysis or sharing with stakeholders. HEC-HMS allows you to export hydrographs, tables, and other output data. Document the results, including the model configuration, input data, and key findings. This documentation is essential for transparency, reproducibility, and communication with others.

By comparing the above two graphs from 01/06/2016 to 31/05/2020

Year	Actual peak discharge (in cumsec)	Simulated peak discharge by HEC-HMS model (in cumsec)
2016-2017	1963.376	1589
2017-2018	583.546	542.6
2018-2019	343.899	720.3
2019-2020	602.444	538.485

Gauge discharge data of Damercherla station was used in calibrating and validating the model. Simulated discharges were compared with the field observed discharges at Damercherla. It is found that there are small differences between the simulated and observed values. By this model we will estimate future flood discharges for bigger rainfall events. And we can take suitable measures to avoid floods. Integrate HEC-HMS with GIS data to create detailed floodplain maps. Identify areas that are likely to be affected during different flood scenarios. Develop and implement early warning systems based on hydrological models. By monitoring real-time weather conditions and river/stream flows, you can provide timely warnings to residents and authorities, allowing for evacuation or other preparedness measures.

5. CONCLUSION

* After analysing the results from HEC-HMS, It can be concluded that Considering from 01/06/2016 to 31/05/2017, the estimated peak discharge is 1589 m³/sec and actual peak discharge is 1963.376 m³/sec. It occurred on 24th September 2016.

* Considering from 01/06/2017 to 31/05/2018, the estimated peak discharge is 542.6 m³/sec and actual peak discharge is 583.546 m³/sec. It is occurred on 4th October 2017.

* Considering from 01/06/2018 to 31/05/2019, the estimated peak discharge is 720.3 m³/sec and actual peak discharge is 343.899 m³/sec. It is occurred on 21st August 2018.

* Considering from 01/06/2019 to 31/05/2020, the estimated peak discharge is 602.444 m³/sec and actual peak discharge is 538.485 m³/sec. It is occurred on 7th October 2019.

* With this hydrological modelling approach, discharge estimation at any river confluence can be issued, and influence of any tributary can be examined separately. The simulation shows that the computed hydrographs match well with the observed hydrographs. Accuracy in computing peak discharge was 75 percent approximately when compared to the observed flows.

* For estimating the runoff of Musi River for different rainfall events is crucial for understanding its impact on the surrounding environment and communities. By considering factors such as the amount and intensity of rainfall, soil type, and topography, we can accurately estimate the runoff using methods such as the Rational Method and the SCS Curve Number Method.

* Through our case study, we have seen how these methods can be applied to estimate runoff for Musi River, and we have discussed the accuracy and challenges associated with them. Despite their limitations, these methods provide valuable insights into the behavior of Musi River and help us make informed decisions regarding water management and flood control.

* By continuing to explore new technologies and methods, such as remote sensing and machine learning, we can improve our understanding of runoff and its impact on Musi River. Ultimately, this knowledge will enable us to better protect the environment and communities that rely on this vital resource.

6. REFERENCES

- * V. Jothiprakash , C Praveen Kumar and M Manasa (2017). Daily runoff estimation in Musi river basin, India, from gridded rainfall using SWAT model IIT Bombay, Mumbai 400076, India. E.W.Publications 57:pp1-7 chrome extension://efaidnbmnnibpcajpcglclefindm-kaj/ https://www.ewra.net/ew/pdf/EW_2017_57_09.pdf
- * G.Srinivas and Gopal M Naik (2017). Hydrological Modeling of Musi River Basin and Impact Assessment of Land Use Change on Urban Runoff, University College of Engineering (Autonomous), Osmania University, Hyderabad. International Journal of Engineering Research & Technology (IJERT), ISSN: 2278-0181, IJERTV6IS070203 www.ijert.org , Vol. 6 : pp 1-9
- * Talari Reshma and Sundara Kumara Pitta (2010). SIMULATION OF RUNOFF IN WATERSHEDS USING SCS-CN AND MUSKINGUMCUNGE METHODS USING REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEMS NIT, Andhra Pradesh. International Journal of Advanced Science and Technology, vol.25 : pp 1-13
- * James Oloche Oleyiblo and Zhi-jia-li (2010), Application of HEC-HMS for flood forecasting in Misai and Wan'an catchments in China, Volume 3, Issue 1 <https://doi.org/10.3882/j.issn.1674-2370.2010.01.002>
- * Shahla Azizi , Ali Reza Ilderomi and Hamid Noori (2021), Investigating the effects of land use change on flood hydrograph using HEC-HMS hydrologic model (case study: Ekbatan Dam), Springer link publications, <https://link.springer.com/article/10.1007/s11069-021-04830-6>
- * Koneti et al. (2018), Hydrological Modeling with Respect to Impact of Land-Use and Land-Cover Change on the Runoff Dynamics in Godavari River Basin Using the HEC-HMS Model, ISPRS Int. J.Geo-Inf. 2018, 7(6),206; <https://doi.org/10.3390/ijgi7060206>
- * AisyahAzizahAbas and MazlanHashim (2014), “Change detection of runoff-urban growth relationship in urbanized watershed”.IOP Conference Series Earth and Environmental Science.
- * J.D. Miller et al. (2014) “Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover.” Journal of Hydrology 515 (2014) 59–70.
- * B. Zhang et al. (2015).“Effect of urban green space changes on the role of rainwater runoff reduction in Beijing, China.” Journal of Landscape and Urban Planning 140 (2015) 8–16.
- * NoaOhana-Levi et.al. (2015).” Modeling the Effects of Land-Cover Change on Rainfall-Runoff Relationships In a Semiarid, Eastern Mediterranean Watershed.”Advances in Meteorology Volume 2015.
- * Kishor Choudhari et.al. (2014).” Simulation of rainfallrunoff process using HEC- HMS model for Balijore Nala watershed, Odisha, India.” INTERNATIONAL JOURNAL OF GEOMATICS AND GEOSCIENCES Volume 5, No 2.
- * Susana Ochoa-Rodriguez et.al. (2015)” Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation”. Journal of Hydrology 531 (2015) 389–407.
- * Catherine Kuhn. (2014). “Modeling rainfall-runoff using SWAT in a small urban wetland.” FES 724 Watershed Cycles and Processes Spring 2014 Yale University School of Forestry and Environmental Studies.
- * M. Borris. et.al. (2013). “Simulating future trends in urban stormwater quality for changing climate, urban land use and environmental controls”. Journal of water Science & Technology, 68.9.

ECOLOGICAL RESTORATION OF PAVI SADAKPUR POND: AN INTEGRATED APPROACH TO DECENTRALIZED WASTEWATER TREATMENT USING NBS

Navya Mistry¹, Shekhar Ramachandran²

Youth Researcher, Jalchakra Innovations LLP, Mumbai University, Maharashtra, India

Founder, Jalchakra Innovations LLP, Mumbai University, Maharashtra, India

Email : navya@jalchakra.com¹, shekhar@jalchakra.com²

ABSTRACT

Water pollution and the degradation of natural water bodies present significant environmental and public health challenges, particularly in rapidly urbanizing regions. The Pavi Sadakpur Water Body Rejuvenation Project, initiated by Jalchakra Innovations LLP in March 2024, employed Cownomics® Technology, an in-situ, nature-based treatment method to restore the ecological balance of the pond without mechanical dredging or chemical interventions. This study evaluates the effectiveness of Cownomics® Technology in improving water quality, air quality, biodiversity, and community engagement. The treatment process was divided into three phases—

Resurrection, Restoration, and Rejuvenation—addressing issues such as high biochemical oxygen demand (BOD), chemical oxygen demand (COD), total dissolved solids (TDS), and eutrophication. Results indicate a significant improvement in water clarity, dissolved oxygen (DO) levels, and reduction in airborne pollutants such as methane (CH_4), carbon dioxide (CO_2), and hydrogen sulphide (H_2S). The project also facilitated the return of native and migratory species, enhanced soil fertility for agriculture, and engaged the local community through cleanup drives and awareness programs. An Environmental Impact Assessment (EIA) by IIT Delhi confirmed the project's success in improving ecological resilience and reducing pollution levels. The findings demonstrate that nature-based solutions (NbS) can serve as a scalable, cost-effective approach for urban waterbody restoration. This study supports the integration of decentralized wastewater management and eco-dredging techniques into broader water conservation policies.

Keywords: Air Quality, Biodiversity Restoration, Cownomics Technology, Eco-Dredging, Environmental Sustainability, Integrated Wastewater Management, Nature-Based Solutions, Waterbody Rejuvenation.

1. INTRODUCTION

Sustainable Waterbody Rejuvenation: A Case Study of the Pavi Sadakpur Pond Restoration Using Cownomics® Technology

Water pollution and the degradation of natural water bodies pose critical environmental and public health concerns worldwide. In India, rapid urbanization, industrial discharge, and untreated sewage contribute to declining water quality, leading to ecological imbalances and severe health hazards. The Pavi Sadakpur Pond in Loni, Ghaziabad, suffered from extreme contamination due to untreated sewage inflows and waste accumulation, necessitating urgent restoration.

Jalchakra Innovations LLP initiated the Pavi Sadakpur Water Body Rejuvenation Project in March 2024, employing Cownomics® Technology, a nature-based, IN-SITU treatment approach. Unlike conventional methods that rely on mechanical dredging or chemical treatments, Cownomics® Technology restores the natural microbiota of the water body, enabling ecological self-recovery. This initiative represents a scalable and sustainable model for waterbody rejuvenation, characterized by zero discharge and zero carbon footprint. The study examines the methodology, environmental impact, and community benefits of this restoration process, contributing to broader discussions on sustainable water management. With global wastewater generation reaching approximately 380 billion cubic meters annually, only 20% undergoes proper treatment (UN-Water, 2023). Conventional treatment methods remain energy-intensive, costly, and unsustainable due to sludge disposal challenges. Integrated Wastewater Management Systems (IWMS) provide a holistic and sustainable approach by combining decentralized treatment, nature-based solutions (NbS), and resource recovery mechanisms. This paper evaluates the effectiveness of IWMS through the Pavi Sadakpur case study, demonstrating how Cownomics® Technology—a chemical-free and energy-efficient methodology—successfully restored a severely polluted water body. Additionally, it explores pollution control and resource recovery strategies, highlighting their role in achieving long-term water sustainability.

2. LITERATURE REVIEW

2.1 Site Overview And Problem Area

The Pavi Sadakpur Pond, located in Loni, Ghaziabad, is a stagnant water body historically

used for multiple purposes, including livestock watering and agricultural support. However, prolonged contamination led to poor water quality, foul odours, and the proliferation of vector-borne diseases.

2.2 Pollution Assessment And Environmental Challenges

Before treatment, the pond exhibited the following critical issues:

1. Water Quality Degradation

- High Biochemical Oxygen Demand (BOD) & Chemical Oxygen Demand (COD):** Excessive organic and chemical pollutants reduced oxygen levels, harming aquatic life.
- Eutrophication:** Unchecked nutrient inflow, especially nitrogen and phosphorus, promoted algal blooms, further deteriorating water quality.
- Toxic Heavy Metals:** Industrial discharge contributed to lead, arsenic, and chromium contamination, making the water hazardous for human and animal contact.

2. Public Health Hazards

- Foul Odor & Airborne Contaminants:** Rotting organic waste and industrial effluents released hydrogen sulphide (H_2S) and ammonia, affecting nearby residents' respiratory health.
- Increased Disease Risk:** Contaminated water harboured bacteria (*E. coli*, *Salmonella*), posing a risk of cholera, dysentery, and skin infections.
- Skin & Eye Irritations:** Direct contact with polluted water caused rashes, allergies, and eye infections among locals and labourers working near the site.

3. Ecosystem Disruption

- Loss of Aquatic Biodiversity:** Fish mortality increased due to oxygen depletion and toxic effluents. Native species declined, affecting local ecological balance.
- Disappearance of Migratory Birds:** The pond, once a habitat for seasonal birds, became uninhabitable due to contamination and food chain disruption.

- Soil Contamination:** Seepage of pollutants into surrounding soil degraded its fertility, affecting nearby agricultural lands.

4. Socioeconomic Impact

- Decline in Local Livelihoods:** Fishermen and farmers depending on the pond faced economic losses due to pollution-driven fish kills and soil infertility.
- Reduced Property Value:** The surrounding area's real estate market suffered as the pond became a source of pollution rather than a scenic or usable water body.

- Community Neglect & Health Costs:** Increased medical expenses for waterborne diseases burdened local residents, while the pond's degradation discouraged community engagement and recreation.

5. Structural & Management Challenges

- Siltation & Reduced Water Holding Capacity:** Continuous deposition of organic sludge and solid waste reduced the pond's depth, limiting its ability to retain water.
- Illegal Dumping & Encroachment:** Unregulated waste disposal and nearby urban expansion further stressed the pond's health.
- Lack of Sustainable Wastewater Management:** The absence of proper sewage treatment and drainage planning led to continuous contamination.
- These issues underscore the urgent need for comprehensive restoration, including sewage treatment, waste management, and ecosystem rehabilitation strategies. Would you like recommendations for a remediation plan?

3. METHODOLOGY

3.1 Cownomics® Technology

Cownomics® Technology: A Revolutionary Approach to Waterbody Rejuvenation Cownomics® Technology is an innovative, Vaidic science-based, and nature-driven methodology for the IN-SITU rejuvenation and restoration of waterbodies and wetlands. This sustainable, result-oriented, and indigenous technology focuses on the "Resurrection of Native Ecology", transforming polluted and degraded water systems into self-sustaining eco systems without physically removing or diverting contamination.

Instead of relying on conventional sewage treatment or physical waste removal, Cownomics® Technology leverages the principles of resurrected

aqua-ecology, enabling the natural ecosystem to "consume and digest" pollutants. This process converts excess nutrients, organic matter, and contaminants into raw material that strengthens the aquatic food chain, leading to a healthier and more balanced ecosystem.

KEY DELIVERABLES OF OUR TECHNOLOGY

- Foul Odor Elimination:** Neutralizes toxic gases like hydrogen sulphide and ammonia.
- Mosquito & Pathogen Control:** Prevents breeding grounds, reducing vector-borne diseases.
- Algal Bloom Suppression:** Controls eutrophication by restoring ecological balance.
- Ecological Dredging:** Naturally reduces sludge accumulation through biological consumption.
- Biodiversity Revitalization:** Supports aquatic life and re-establishes the food chain.
- Rainwater Harvesting & Soil Restoration:** Enhances water retention, prevents flooding, and maintains perennial water levels.
- Air Quality Improvement:** Increases oxygenation and reduces harmful emissions from decomposing waste.
- Climate Moderation:** Regulates ambient temperature by balancing heat absorption and release in the surrounding area.
- Native Flora & Fauna Restoration:** Encourages the return of birds, bees, and butterflies, boosting ecosystem immunity.
- Blue Carbon Sequestration:** Aids in carbon absorption, contributing to climate resilience.

Advantages of Our Technology and NbS:

100% In-Situ Process: No excavation, mechanical dredging, biological intervention or chemical intervention required.

Self-Sustaining Solution: Converts pollution into ecological resources without manual removal.

Zero External Infrastructure Needs: No dependency on sewage treatment plants or real estate interventions.

Cost-Effective & Eco-Friendly: Operates naturally with minimal maintenance and investment.

This breakthrough approach ensures that polluted waterbodies are not just cleaned but ecologically resurrected, leading to long-term sustainability, enhanced biodiversity, and improved environmental health.

3.2 Process and Procedure

An extensive physical cleaning operation was conducted by the Jalchakra Innovation team at the outset of the project. This effort took approximately 25 days to clear all the physical waste accumulated in the waterbody, during which we removed daily between 5 to 12 truckloads of waste. Following this, on 27th May 2024, we initiated the implementation of Cownomics® Technology.

The Treatment Process of Pavi Sadakpur Pond is Divided into Three Phases

Phase 1: The Resurrection

The initial phase of the treatment process focused on reviving the native microbiota of Pavi Sadakpur Pond, eliminating foul odours and mosquito populations, which are often indicators of stagnant and polluted water bodies. During this three-month period, we observed a significant reduction in organic waste accumulation and a decrease in key water quality indicators such as Total Dissolved Solids (TDS), Total Suspended Solids (TSS), and Chemical Oxygen Demand (COD). Laboratory reports confirmed an increase in water clarity, with the water taking on a lighter coloration. Additionally, the formation of continuous wave patterns indicated a positive shift in water dynamics, reflecting improved oxygenation and enhanced biological activity.

Phase 2: The Restoration

During this phase, the focus shifted to eco-dredging, a method designed to remove accumulated sludge in a natural, sustainable manner. A patent has been applied for this unique approach, which allows for the organic breakdown of sediment deposits through microbial digestion, reducing the need for mechanical dredging. As a result, the pond's soil capillaries re-established connections to the aquifer, leading to an increase in the pond's water-holding capacity. This was a critical milestone, as it enhanced the filtration ability of natural sediments, further improving water quality. The visible outcomes of this phase included a more stable aquatic ecosystem with many migration birds coming near the vicinity of the waterbody, and a healthier habitat for native flora and fauna.

Phase 3: The Rejuvenation (Ongoing Phase)

Currently, Pavi Sadakpur Pond is undergoing the Rejuvenation Phase, which aims to stabilize the water body's metabolic rate so that it can digest incoming pollution loads effectively on a daily basis. The long-term goal is to develop a self-sustaining system that minimizes the need for external

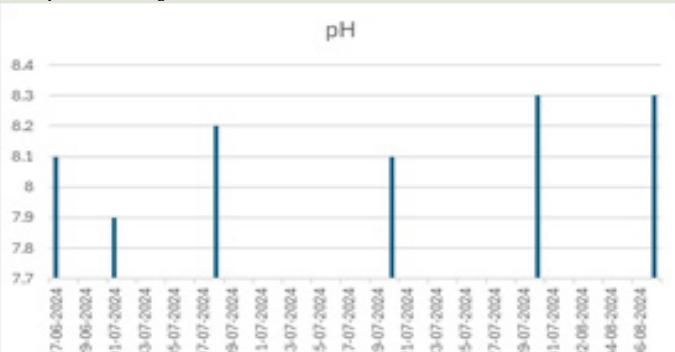
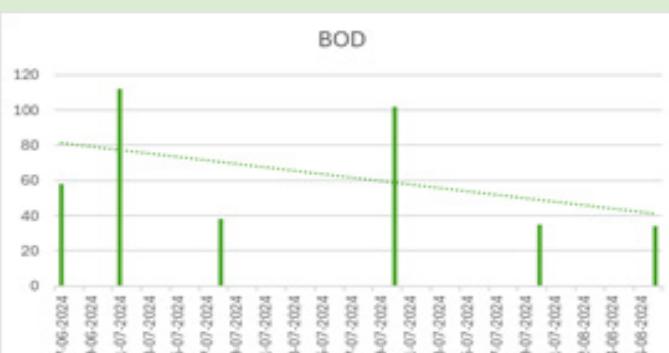
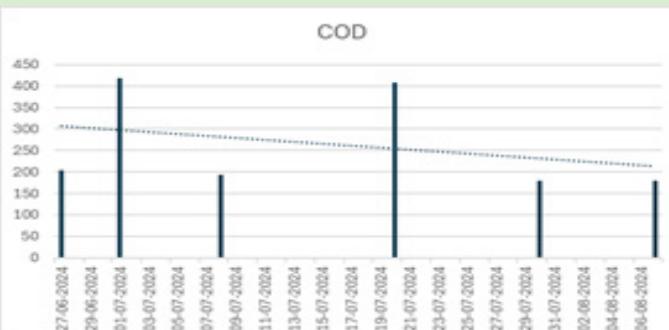
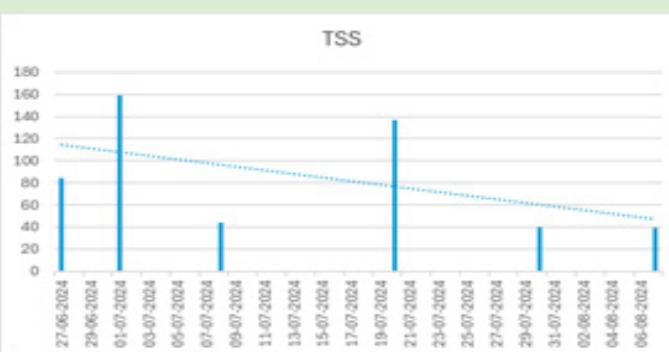
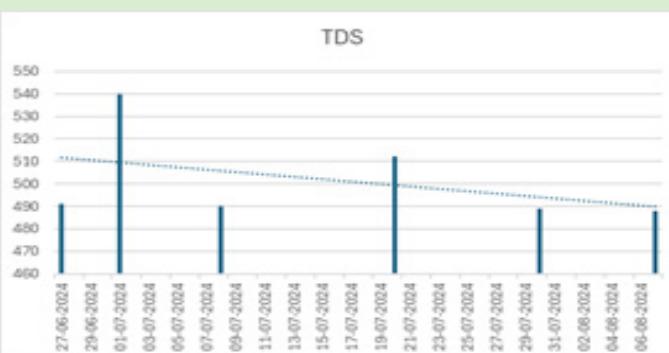
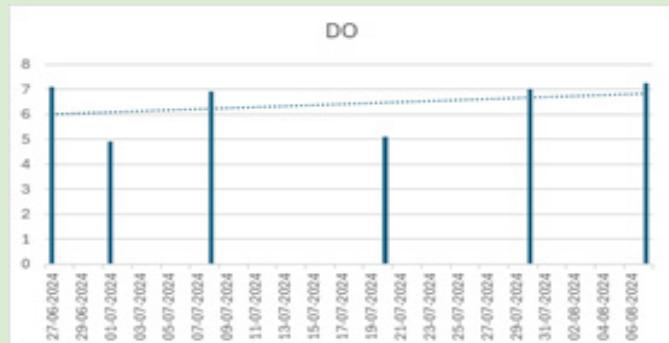
interventions. Expected improvements include enhanced resistance to seasonal pollution variations, greater ecological balance, and a permanent restoration of native biodiversity. Furthermore, this phase ensures that the pond will be resilient to future contamination threats, securing its role as a natural, thriving aquatic ecosystem.

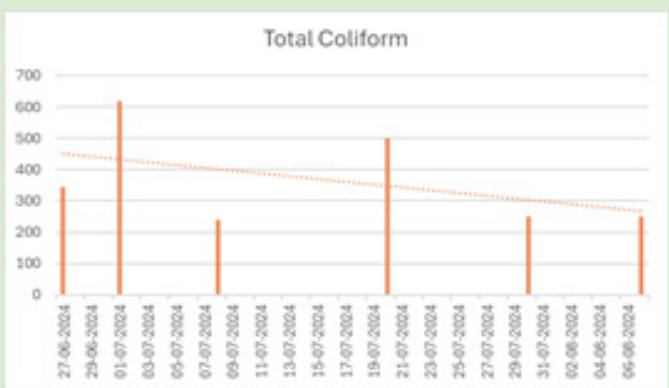
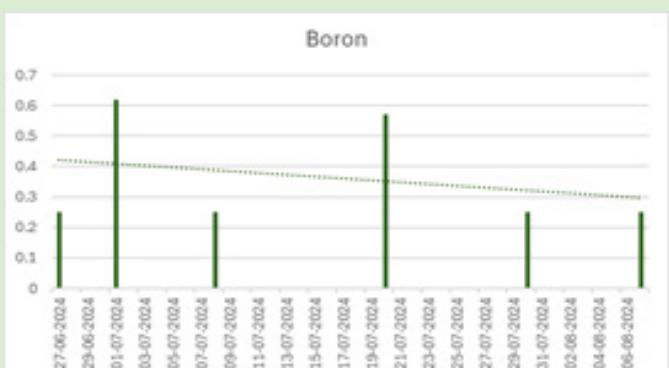
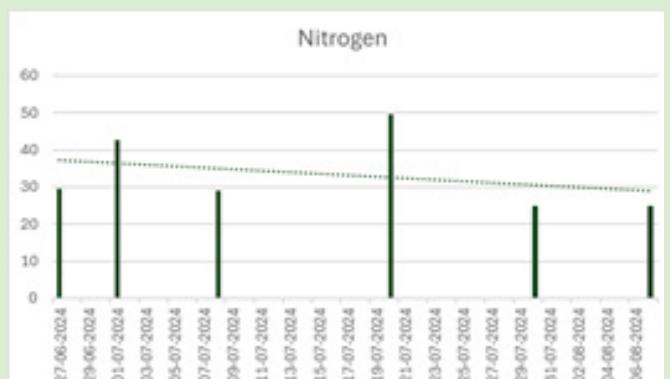
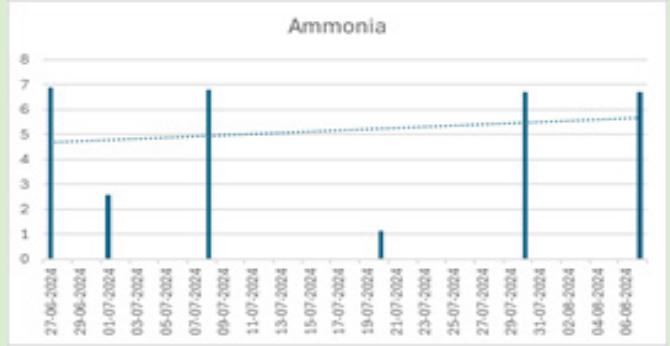
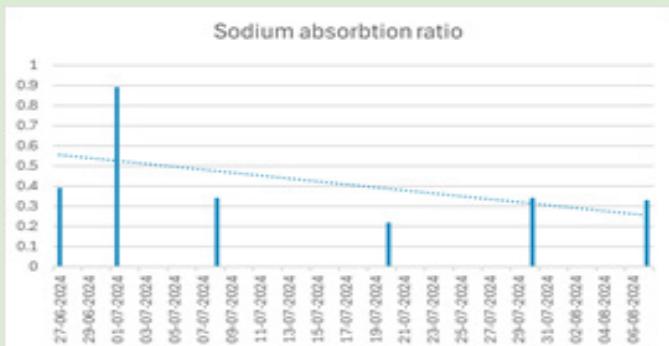
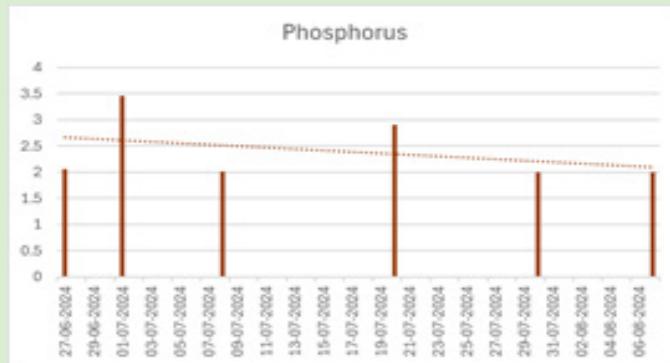
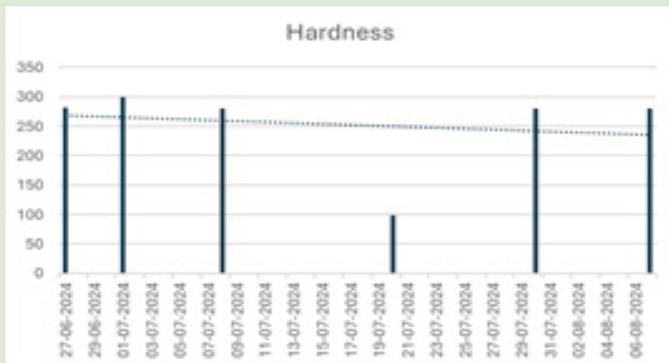
3.3 Monitoring and Environmental Impact Assessment

IIT Delhi conducted an Environmental Impact Assessment (EIA) to track changes in water quality, biodiversity, and air quality throughout the rejuvenation process. Parameters monitored included:

- Total Dissolved Solids (TDS)
- Total Suspended Solids (TSS)
- Chemical Oxygen Demand (COD)
- pH
- Conductivity at 25°C
- Dissolved oxygen (DO)
- Biological Oxygen Demand (BOD)
- Total Phosphorus
- Total Nitrogen
- Total Ammonia
- Total Hardness
- Boron
- Sodium absorption ratio
- Total Coliform

Water transparency and viscosity, Air quality and greenhouse gas emissions, Soil health testing, etc.







4 RESULTS AND DISCUSSIONS








- Environmental and Community Impact

The restoration of Pavi Sadakpur Pond has yielded significant environmental and social benefits, enhancing both ecological stability and community well-being. This section elaborates on the key improvements in air quality, biodiversity, agriculture, and community engagement.

Water Quality Improvement: We have enhanced the water quality to meet CLASS II standards as per CPCB regulations.

Graphs Study:

Note: The treatment is 100% IN-SITU therefore Due to a surge inflow of contaminants, the fluctuations appear naturally.

Air Quality Improvement

One of the most notable outcomes of the project was the nullification of greenhouse gases emitted from the polluted water body. Before the intervention, the accumulation of organic waste led to the release of methane (CH_4), carbon dioxide (CO_2), and hydrogen sulphide (H_2S), all of which contribute to poor air quality and unpleasant odours. Through microbial treatment and eco-dredging, these emissions were drastically reduced, leading to a decline in airborne particulate matter (PM2.5 and PM10), which directly benefits the respiratory health of nearby residents.

As a result, the Air Quality Index (AQI) improved, reducing instances of allergic reactions, respiratory disorders, and discomfort caused by foul odours. The project also contributed to urban cooling,

as cleaner water bodies help regulate local temperatures by reducing heat absorption.

Biodiversity Gains

The pond's restoration has played a crucial role in re-establishing ecological balance, leading to the return of native and migratory species. Previously, the pond had become inhospitable due to high levels of pollutants, low oxygen levels, and a disrupted food chain. With improved water quality and reconnected groundwater channels, aquatic flora and fauna have flourished.

Key improvements include:

- Resurgence of fish populations, including species that were previously on the decline.
- Return of amphibians and reptiles, which play a critical role in the aquatic food web.
- Reappearance of migratory birds, signalling a healthier habitat capable of sustaining diverse wildlife.
- Growth of aquatic plants and riparian vegetation, leading to better water retention, natural filtration, and a stable ecosystem.
- These biodiversity gains indicate a successful ecological restoration, ensuring long-term sustainability for the pond and its surrounding habitats.

Agricultural Benefits

With improved soil capillaries and reduced sludge deposits, the pond now serves as a valuable water source for nearby agricultural lands. Key benefits include:

Enhanced soil fertility: The natural filtration of water through organic sediments has replenished essential nutrients in the surrounding soil, increasing its productivity.

Sustainable irrigation: The pond now provides cleaner and nutrient-rich water for irrigation, reducing dependency on chemical fertilizers.

Resilience to drought: With increased water-holding capacity, farmers now have a more reliable water source even during dry seasons.

Improved crop yields: Farmers have reported better-quality produce, owing to the improved microbial balance in both soil and water.

This restoration has directly supported local agricultural economies, reinforcing the interdependence between water conservation and sustainable farming.

Community Engagement and Awareness

A key aspect of the project has been active community participation, fostering a collective responsibility towards sustainable water management. These are some of the examples of the initiative taken by Jalchakra Innovations to cater to community needs:

Cleanup drives: Local volunteers, students engaged in periodic cleanups to remove waste, and furthermore avoid putting waste into the waterbody, ensuring the pond remained pollution-free.

Educational workshops: Awareness programs were conducted on wetland conservation, pollution control, and sustainable agriculture to empower residents with knowledge along with semi-government institutes including the Giri Institute of Development, ENACTUS, etc.

Local employment opportunities: The project created job opportunities for maintenance, monitoring, and community mentorship activities, ensuring long-term engagement.

Cultural and recreational revival: The restored pond has become a community hub, with residents now using it for fishing, birdwatching, and cultural gatherings, reinforcing the emotional and social connection with the water body.

The Pavi Sadakpur Pond project has not only restored an important ecological asset but also transformed the community's approach to Environmental Stewardship. Moving forward, this initiative serves as a model for sustainable urban wetland management, proving that local action can drive large-scale ecological impact.

Visual Representation of waterbody After Intervention:

CONCLUSION

The Pavi Sadakpur Water Body Rejuvenation Project demonstrates a scalable, cost-effective, and environmentally sustainable model for waterbody restoration. By leveraging Cownomics® Technology, the project achieved significant improvements in water quality, biodiversity, and air quality without mechanical or chemical interventions.

Key takeaways from the study include:

1. Integrated wastewater management systems can maximize treatment efficiency by utilizing decentralized units like Pavi Sadakpur, which employ Nature-Based Solutions (NbS) to restore water quality and ecosystem balance.
2. Nature-Based Solutions (NbS) are effective for large-scale ecological restoration.
3. Eco-dredging provides a sustainable alternative to mechanical sludge removal.
4. Community participation enhances the long-term sustainability of water conservation projects.

As the project progresses, further monitoring will assess long-term resilience, providing valuable insights for replicating similar initiatives across India and beyond.

REFERENCES

1. UN-Water. (2023). Wastewater Treatment and Sustainable Development Goals.
2. Government of India. (2023). Guidelines on Integrated Water Resource Management.
3. Jalchakra Innovations LLP. (2024). Project Data and Reports.
4. IIT Delhi. (2024). Environmental Impact Assessment for Pavi Sadakpur Pond.
5. Cownomics® Technology Patent Documentation.

योग एवं समग्र स्वास्थ्य

= एक समग्र जीवनशैली की ओर =

डॉ. प्रगति

योग एवं स्वास्थ्य विशेषज्ञ,

राष्ट्रीय मुक्त विद्यालयी शिक्षा, संस्थान, शिक्षा मंत्रालय, भारत सरकार

ईमेल— pragati.dsvv@gmail.com

प्रस्तावना

वर्तमान समय में हम सभी योग शब्द से भलीभाँति परिचित हैं। चाहे बच्चा हो, जवान हो, स्त्री हो या पुरुष हो, हर उम्र का व्यक्ति अपने अनुसार योग शब्द से कुछ ना कुछ अर्थ ग्रहण करता है क्योंकि योग के महत्व इसके उपयोग से किसी न किसी रूप में इंकार नहीं किया जा सकता है, योग को हम सच्चे अर्थों में अपने जीवन में ग्रहण पर व्यवहारिक दृष्टि से इसे अपने लिए उपयोगी बना सके इसके लिए बहुत ही आवश्यक है कि इसके सही अर्थ को जाना और समझा जा सके। यदि हम योग शब्द को गहराइ से जानने समझने व अनुभव करने का प्रयत्न करें तो हम पाएंगे कि कोई व्यक्ति अपनी प्रति पूरी तरह सजग होकर अपने चित्त में संचित जन्म जन्मांतर के जो कर्म संस्कार अथवा पाप पुण्य के रूप में अब तक के जन्मों में भी जो कर्म हुए हैं उन सभी कर्मों का क्षय करके, भोग करके जब अपने आत्मा स्वरूप में स्थिर हो जाता है अर्थात् उसे यह बोध हो जाता है कि मैं पंचमहाभूतों से बना पंचमहाभूत उसे बना नष्ट होने वाला शरीर नहीं हूँ अपितु परमात्मा का अभिन्न अंश हूँ इसे ही सच्चे अर्थों में योग कहा जाता है।

आज की तेज रफतार जीवनशैली, बढ़ता मानसिक तनाव, अनियमित खानपान और तकनीकी निर्भरता ने मानव स्वास्थ्य के सामने नई चुनौतियाँ खड़ी कर दी हैं। ऐसे समय में स्वास्थ्य की संकल्पना केवल रोग—मुक्त अवस्था नहीं, बल्कि एक समग्र अवस्था है, जिसमें व्यक्ति शारीरिक, मानसिक, सामाजिक और आध्यात्मिक रूप से संतुलित होता है।

योग : परिभाषा और उद्देश्य

भारतीय दर्शन में योग विद्या का महत्वपूर्ण स्थान है कि यह विद्या सभी विधाओं में सर्वोपरि व विशेष स्थान रखती है। योग विद्या से संबंधित ज्ञान सभी भारतीय ग्रंथों में अनेक स्थानों पर देखने को मिलता है वेद, पुराण, उपनिषद श्रीमद्भागवत गीता आदि प्राचीन ग्रंथों में योग विद्या विद्यमान् है।

योग सूत्र के प्रणेता महर्षि पतंजलि के अनुसार—

“योगः चित्तवृत्तिनिरोधः”

अर्थात् मन की चंचल वृत्तियों को रोकना ही योग है।

पण्डित श्रीराम शर्मा आचार्य जी के अनुसार —

जीवन जीने की कला ही योग है।

इसी प्रकार श्रीमद्भागवत गीता के अनुसार कर्मों की कुशलता का नाम ही योग है कर्मों की कुशलता का तात्पर्य यह है कि हमें कर्म इस प्रकार करने चाहिए कि वे बंधन का कारण न बने। अनासन्त भाव से अपने कर्तव्य कर्मों का निर्वाहन करना ही कर्मयोग है। योग केवल शारीरिक अभ्यास नहीं, बल्कि एक आंतरिक अनुशासन है, जो व्यक्ति को स्थिरता, सजगता और आत्म-सक्षात्कार की ओर ले जाता है।

योग का उद्देश्य हमारे जीवन का समग्र विकास करना है या तो ऐसे कह सकते हैं जीवन का सर्वांगीण विकास करना है सर्वांगीण विकास से तात्पर्य यहाँ शारीरिक, मानसिक, सामाजिक एवं आध्यात्मिक विकास से है। योग जीवन जीने की कला है। योग एक ऐसा साधना विज्ञान है जिसके द्वारा जन्म जन्मान्तर के संस्कार क्षीण हो जाते हैं। शारीरिक एवं मानसिक निरोगता, स्वरक्षता, कुविचारों, कुसंस्कारों से मुक्ति मिलती है। सु संस्कारिता, सुविचार के द्वारा अच्छे व्यक्तित्व का निर्माण होता है जीवन में उच्च व दिव्य बनता है।

आज के आधुनिक युग में भाग दौड़ भरी जिंदगी में मनुष्य रोगों से ज्यादा ग्रस्त है और योग ऐसे में मानसिक एवं शारीरिक स्वास्थ्य के साथ साथ सामाजिक एवं आध्यात्मिक स्वास्थ्य भी प्रदान करता है विकास के इस युग में योग कार्यक्षेत्र अनंत व्यापक है व योग के अनेक क्षेत्रों में इसका विशेष महत्व है।

विश्व स्वास्थ्य संगठन (WHO) के अनुसार :

“स्वास्थ्य एक ऐसी स्थिति है जिसमें व्यक्ति शारीरिक, मानसिक और सामाजिक रूप से पूर्णतः स्वस्थ होता है एक कि केवल रोग या दुर्बलता से मुक्त।”

समग्र स्वास्थ्य : एक परिचय

समग्र स्वास्थ्य (Holistic Health) वह अवस्था है जिसमें जीवन के चार आयाम —

1. **शारीरिक महत्व** — योग साधना का शारीरिक स्वास्थ्य में महत्वपूर्ण योगदान है योग के आठ अंगों में तीसरा चौथा अंक आसन एवं प्राणायाम है जिसके माध्यम से शारीरिक स्वास्थ्य प्राप्त किया जा सकता है। कि योगासनों से शारीरिक शक्तियों का विकास होता है, जिससे शरीर हष्ट पुष्ट बनता है। उससे अंग प्रत्यंग की कार्य क्षमता में वृद्धि होती है तथा शरीर स्वस्थ व निरोग बनता है। आसन व प्राणायाम के द्वारा सभी अंग सुचारू रूप से कार्य करने लगते हैं तथा अंतः स्त्रावतंत्र भी प्रभावित होता है तथा ग्रंथियों के स्त्राव संतुलित होते हैं जिससे शरीर स्वस्थ रहता है। योग एक स्वस्थ जीवन जीने की कला है जिसे अपनाने से जीवन सुव्यवस्थित हो जाता है वह शारीरिक स्वास्थ्य प्राप्त होता है।

2. **मानसिक महत्व** — योग के द्वारा शारीरिक स्वास्थ्य के साथ साथ मानसिक स्वास्थ्य को भी प्राप्त किया जा सकता है। आज के आधुनिक समाज में मानसिक रोगों की वृद्धि हो रही है जिनका निराकरण करने में आधुनिक विज्ञान असमर्थ है इस तनाव जन्य परिस्थितियों से निपटने के लिए योगाभ्यास एक सफल व कारगर चिकित्सा बार चिकित्सा पद्धति है, जिसके द्वारा सम्पूर्ण मानसिक स्वास्थ्य प्राप्त किया जा सकता है। मानसिक स्वास्थ्य के लिए प्राणायाम का विशेष महत्व बताया गया है।

3. **सामाजिक महत्व** — किसी भी समाज के उत्थान में सुसंस्कारित परिवार की अहम भूमिका होती है। स्वस्थ एवं सुसंस्कारित परिवार से ही एक आदर्श समाज की स्थापना होती है इस आदर्श समाज की स्थापना में योग की महत्वपूर्ण भूमिका है योग मनुष्यों को शारीरिक मानसिक रूप से स्वस्थ बनाता है और एक स्वस्थ व्यक्ति ही स्वस्थ समाज का निर्माण कर सकता है आधुनिक समाज में मनुष्य धन कमाने भौतिक संसाधनों को बटोरने तथा विलासितापूर्ण जीवन विता रहा है जिससे नकारात्मक चिंतन को, सामाजिक कुरीतियों या बुराई को बढ़ावा मिल रहा है। योग के अंतर्गत आसन और प्राणायाम का अभ्यास शारीरिक और मानसिक रोगों का निवारण पर मनुष्य को उच्चता की ओर ले जाता है जिससे उसके विचार उच्च हो जाते हैं जिसका सीधा प्रभाव समाज पर पड़ता है ज्ञान योग, कम योग, भक्तियोग जैसे साधन हमारे समाज पर सीधा प्रभाव डालते हैं, कर्म, भक्ति और ज्ञान का समन्वय हमारे जीवन को उच्च बनाता है।

4. **आध्यात्मिक महत्व** — मनुष्य जीवन का मुख्य उद्देश्य है मोक्ष की प्राप्ति। इस महान लक्ष्य की प्राप्ति का माध्यम हमारा मन है। वह मन ही है जो की बंधन और मोक्ष का कारण है, योग साधना में मन को ईश्वर उन्मुख बनाकर तत्व ज्ञान की प्राप्ति की जाती है। योग के द्वारा अनेक जन्मों के संस्कारों द्वारा मलिन हुए चित का निर्मल हो जाना तथा आत्म स्वरूप का ज्ञान कराया जाता है। यह दृष्टिकोण व्यक्ति को पूर्ण मानव बनने की दिशा में प्रेरित करता है।

समग्र स्वास्थ्य के लिए योग

योग विभिन्न स्तरों पर व्यक्ति को सशक्त बनाता है। इसका सकारात्मक प्रभाव निम्नलिखित रूपों में देखा जा सकता है —

स्वास्थ्य आयाम	योग का प्रभाव
शारीरिक स्वास्थ्य	प्रतिरक्षा प्रणाली मजबूत, ऊर्जा में वृद्धि, मांसपेशियों का लचीलापन।
मानसिक स्वास्थ्य	तनाव और अवसाद में कमी, एकाग्रता और आत्मविश्वास में वृद्धि, आत्म-नियंत्रण, संतुलन, करुणा, सहनशीलता।
सामाजिक स्वास्थ्य	संबंधों में संतुलन, सामाजिक सद्भावना।
आध्यात्मिक स्वास्थ्य	आत्मबोध, ध्यान, जीवन में उद्देश्य की स्पष्टता।

समग्र स्वास्थ्य की प्राप्ति के लिए योग एक संपूर्ण साधन है, जिसकी व्यावहारिक अभिव्यक्ति योगासनों, प्राणायाम, मुद्राओं और ध्यान के नियमित अभ्यास से होती है। यह संयोजन शरीर, मन और आत्मा — तीनों स्तरों पर व्यक्ति को सशक्त बनाता है।

1. योगासन (Yogasana)

योगासनों से शरीर में लचीलापन, शक्ति और संतुलन आता है। नियमित अभ्यास से अंग-प्रत्यंग सक्रिय होते हैं, पाचन, रक्त संचार व तंत्रिका तंत्र सुचारू होते हैं।

समग्र स्वास्थ्य हेतु उपयोगी आसन

- ताडासन – रीढ़ की हड्डी को सीधा और शरीर को संतुलित करता है
- त्रिकोणासन – पाचन और मेरुदंड के लिए लाभकारी ।
- भुजंगासन – पीठ और श्वसन तंत्र को सुदृढ़ करता है ।
- वज्रासन – पाचन शक्ति को बढ़ाता है ।
- शवासन – संपूर्ण विश्रांति और तनाव मुक्ति हेतु ।

2. प्राणायाम (Pranayama)

प्राणायाम के अभ्यास से प्राणशक्ति का संचार होता है, जिससे मानसिक स्थिरता, आत्म-नियंत्रण और भावनात्मक संतुलन प्राप्त होता है ।

उपयोगी प्राणायाम

- अनुलोम-विलोम – नाड़ी शुद्धि, तनाव मुक्ति ।
- भस्त्रिका – ऊर्जा व जीवनशक्ति में वृद्धि ।
- कपालभाति – आंतरिक शुद्धि और पाचन सुधार ।
- ब्रह्मरी – मानसिक शांति और एकाग्रता ।

3. मुद्रा (Mudra)

मुद्राएँ हमारे शरीर की ऊर्जा को नियंत्रित करने का साधन हैं । इनका प्रभाव शरीर की सूक्ष्म ऊर्जा प्रणाली पर होता है ।

प्रमुख स्वास्थ्यवर्धक मुद्राएँ

- ज्ञान मुद्रा – मानसिक स्पष्टता व ध्यान के लिए ।
- प्राण मुद्रा – ऊर्जा वृद्धि व रोग प्रतिरोधक क्षमता के लिए ।
- वायु मुद्रा – वात विकारों में लाभकारी ।
- अपान मुद्रा – पाचन एवं शुद्धिकरण हेतु सहायक ।

4. ध्यान (Dhyana)

ध्यान मन को एकाग्र करता है, भीतर की यात्रा का द्वार खोलता है और व्यक्ति को आत्म-साक्षात्कार की दिशा में अग्रसर करता है ।

ध्यान की विधि

- शांत वातावरण में बैठकर श्वास पर ध्यान केंद्रित करें ।
- विचारों को आने दें, पर उनसे जुड़ें नहीं ।
- मंत्र जप (जैसे “ॐ”) या दीप की लौ पर ध्यान भी किया जा सकता है ।
- दिन में कम से कम 10–15 मिनट ध्यान अभ्यास करें ।

नियमितता और संयम का महत्व

योग पैकेज का लाभ तभी संभव है जब उसका अभ्यास नियमित रूप से, श्रद्धा और संयम के साथ किया जाए । यह जीवन में स्थायी परिवर्तन लाता है ।

योग अभ्यास क्रम (सामान्य व्यक्ति हेतु)

समय – लगभग 60 मिनट

क्रम	अभ्यास का नाम	समय व लाभ
1	प्रारंभिक तैयारी	5 मिनट – मानसिक एकाग्रता और शरीर को योग के लिए तैयार करना
2	सूक्ष्म व्यायाम	5 मिनट – जोड़ों को खोलना, शरीर को ऊर्जावान बनाना
3	योगासन	20 मिनट – ताडासन, त्रिकोणासन, भुजंगासन, पवनमुक्तासन, वज्रासन, शवासन
4	प्राणायाम	10 मिनट – अनुलोम-विलोम, भ्रामरी, कपालभाति, शीतली शीतकारी
5	मुद्रा और बंध	10 मिनट – ज्ञान मुद्रा, प्राण मुद्रा, मूल बंध, उड़ीयान बंध
6	ध्यान व शवासन	10 मिनट – ध्यान के साथ पूर्ण विश्रांति

वैज्ञानिक प्रमाण और वैशिक स्वीकार्यता

- AIIMS (2021): 12 सप्ताह के योगाभ्यास से तनाव, रक्तचाप, और शर्करा में कमी ।
- Harvard Medical School (2018): प्राणायाम से Cortisol हार्मोन में 32% तक की कमी ।
- NCCIH (USA): योग हृदय, नींद और दर्द नियंत्रण में सहायक ।
- UN (संयुक्त राष्ट्र) – 21 जून को अंतरराष्ट्रीय योग दिवस घोषित किया गया ।
- WHO: योग को “Global Traditional Health System” में मान्यता ।

प्रेरक उद्धरण

- योग केवल व्यायाम नहीं, बल्कि आत्मा की अनुभूति का विज्ञान है ।
- प्रधानमंत्री नरेंद्र मोदी
- योग से मन स्थिर होता है, और धरीर में ऊर्जा आती है ।
- बी.के.एस. अयंगर
- योग हमें हमारे भीतर की दुनिया से जोड़ता है और बाहरी दुनिया के प्रति संतुलित दृष्टिकोण देता है ।
- स्वामी विवेकानंद

निष्कर्ष

योग शब्द संस्कृत व्याकरण के “युज” धातु से बना है जिसका अर्थ है जुड़ना । जुड़ना एक ऐसी विधा जिससे मनुष्य जीवन का सर्वांगीण विकास हो । समग्र स्वास्थ्य की प्राप्ति के लिए योग एक पूर्ण, सुलभ और प्रभावी माध्यम है । यह केवल शरीर का उपचार नहीं करता, बल्कि मन, भावनाओं और आत्मा के स्तर पर गहराई से कार्य करता है । आज आवश्यकता है कि योग को केवल उत्सव के रूप में नहीं, बल्कि जीवन की दिनचर्या के रूप में अपनाया जाए ।

योग के माध्यम से हम न केवल स्वयं को स्वस्थ बना सकते हैं, बल्कि समाज और राष्ट्र के समग्र स्वास्थ्य में भी योगदान दे सकते हैं ।

स्रोत

- World Health Organization (WHO)
- AIIMS, New Delhi
- Harvard Medical School
- National Center for Complementary and Integrative Health
- Patanjali Yoga Sutras
- Bhagavad Gita
- Kathopanishad
- Shvetashvatara Upanishad

LIFE-CYCLE ASSESSMENT AND SUSTAINABILITY OF WATER-RELATED INFRASTRUCTURE

Ashish Shukla¹ and Dr. Satyendra Nath²

¹Research Scholar, Department of Environmental and Natural Resource Management, SHUATS, Uttar Pradesh, India

²Professor Department of Environmental and Natural Resource Management, SHUATS, Uttar Pradesh, India

Email ID: ashishukla22nov@gmail.com¹ satyendra.nath@shiats.edu.in²

ABSTRACT

Life-cycle assessment (LCA) is an essential tool for evaluating the environmental impact of sustainable water infrastructure systems, considering the entire life span of the system from design and construction to operation and decommissioning. This assessment method provides a comprehensive analysis of energy consumption, material usage, green house gas emissions, and resource depletion, enabling decision-makers to optimize infrastructure development while minimizing negative environmental effects. By integrating LCA into the planning and implementation of water systems, stakeholders can identify opportunities for reducing environmental footprints, enhancing efficiency, and promoting sustainability. The assessment also allows comparison between conventional and innovative water management technologies, such as green infrastructure, water reuse systems, and low-impact materials. This abstract discusses the significance of LCA in evaluating the sustainability of water infrastructure, highlighting its potential to guide policy-making, improve resource management, and support the transition towards resilient and environmentally friendly water systems. Furthermore, it addresses challenges such as data availability, system boundary definition, and the incorporation of long-term environmental impacts into the assessment process.

Key Words: Life-cycle assessment, sustainable water infrastructure systems and resource depletion.

INTRODUCTION

Life cycle assessment (LCA) is a process of evaluating the effects that a product has on the environment over the entire period of its life, thereby increasing resource-use efficiency and decreasing liabilities (ISO 14040:2006). It can be used to study the environmental impact of either a product or the function the product is designed to perform (Finnveden *et al.*, 2009). The term emphasizes major activities in the course of the product's lifespan, from its manufacturing, use and maintenance, to its final disposal, including the raw material acquisition required to manufacture the product (Baumann & Tillman, 2004). LCA has been extensively used as a tool to quantify environmental impacts associated with urban water infrastructure (wastewater, drinking water, stormwater, and integrated urban water systems) (Zimmerman *et al.*, 2013). LCA evaluates the environmental burdens from the extraction of raw materials, construction, operation, maintenance, and disposal phases (Hernandez-Sancho *et al.*, 2010). Ultimately, leveraging well-established methods from other disciplinary domains (e.g., public health, social science) will enable LCA to be a more effective tool for addressing the functional (e.g., managing water quantity), environmental (e.g., reducing impacts to local water bodies), social (e.g., protecting public health), and economic (e.g., reducing life cycle costs) sustainability demands of urban water systems (Hughes *et al.*, 2012; Brand *et al.*, 2015).

LCA can assist in

- * Identifying opportunities to accomplish the sustainability in water infrastructure at various points in their life cycle.
- * Informing decision-makers in industry, government or non-government organizations (e.g. for the purpose of strategic planning, priority setting, product or process design or redesign).
- * The selection of relevant indicators of sustainability, including measurement techniques, and
- * Marketing (e.g. implementing an ecolabelling scheme, making an environmental claim, or producing an environmental product declaration) which only focus in attaining the sustainability.

The key stages of the life cycle assessment are:

GOAL DEFINITION AND SCOPING:

Establish the context in which the assessment is to be made and identify the boundaries and environmental effect to be reviewed. All environmental concerns are included and which are excluded are taken into consideration. The system boundaries should be well define to assess the impact categories. The audience of LCA should be considering checking whether it will be a public and peer reviewed documents.

INVENTORY ANALYSIS :

A life cycle inventory is a process of quantifying energy and raw material requirements, atmospheric emissions, waterborne emissions, solid wastes, and other releases for the entire life cycle of a product, process, or activity. In the life cycle inventory phase of an LCA all relevant data is collected and organized.

IMPACT ASSESSMENT :

The impact assessment phase of LCA is aimed at evaluating the significance of potential environmental impacts using the LCI results. In general, this process involves associating inventory data with specific environmental impact categories and category indicators, thereby attempting to understand these impacts. The impacts can be estimated and communicated either as midpoint categories (such as climate change potential, ozone depletion potential, eutrophication potential, and particulate matter formation), or endpoint categories (such as human health, ecosystem quality, and resource depletion), and can optionally include normalization, grouping, and weighting.

LIFE CYCLE INTERPRETATION :

Interpretation is the phase of LCA in which the findings from the inventory analysis and the impact assessment are considered together or, in the case of LCI studies, the findings of the inventory analysis only (ISO 14040:2006). The interpretation phase should deliver results that are consistent with the defined goal and scope and which reach conclusions, explain limitations, and provide recommendations (Finnveden *et al.*, 2009). The interpretation should reflect the fact that the LCIA results are based on a relative approach, that they indicate potential environmental effects, and that they do not predict actual impacts on category endpoints, the exceeding of thresholds or safety margins, or risks (Schmidt *et al.*, 2012).

SUSTAINABILITY OF WATER-RELATED INFRASTRUCTURE:

Sustainable water infrastructure entails the planning and management of water systems to ensure the availability, access, quality, and affordability of water resources in the face of social, environmental, and economic challenges (UN Water, 2018). Water-related infrastructure includes systems like water treatment plants, pipelines, dams, reservoirs, and stormwater management systems (Goh, 2016). To evaluate the sustainability of these systems, it's important to consider environmental, social, and economic aspects (Gleick, 2003; Savenije & van der Zaag, 2008).

ENVIRONMENTAL SUSTAINABILITY:

- Water Use Efficiency** : Ensuring that water use is optimized, with measures to reduce waste and improve the efficiency of water distribution and usage. This can include technologies for water recycling, stormwater management, and the reduction of water losses in distribution systems.
- Energy Consumption** : Many water systems, such as treatment plants and pumping stations, are energy-intensive. Implementing energy-efficient technologies and transitioning to renewable energy sources (e.g., solar, wind) can significantly reduce the environmental footprint.
- Climate Resilience and Adaptation** : Water infrastructure must be designed to adapt to the effects of climate change, such as rising sea levels, changing precipitation patterns, and more frequent extreme weather events (e.g., floods or droughts). This includes the construction of flood-resistant infrastructure and systems that can cope with water scarcity.
- Material Use and Circular Economy**: The choice of materials for building and maintaining infrastructure (e.g., pipes, treatment facilities, dams) has significant environmental impacts. Opting for sustainable materials with low embodied energy, recycling materials where possible, and promoting a circular economy approach can reduce the environmental footprint.
- Resource Use** : Materials such as concrete, steel, and chemicals used in water infrastructure can have significant environmental impacts. LCA helps to assess the embodied environmental impacts of these materials, promoting sustainable alternatives.
- Emissions and Pollution** : Water treatment processes and transportation may produce pollutants

like greenhouse gases, chemical effluents, or waste byproducts, which should be considered in an LCA.

Social Sustainability : Social sustainability focuses on the impact of water infrastructure on people and communities, ensuring that projects are inclusive, equitable, and contribute to societal well-being. Key aspects include:

- Access to Clean Water** : Water infrastructure must provide equitable access to clean, safe drinking water for all communities, including marginalized or underserved populations. Addressing water poverty and improving access in rural or economically disadvantaged areas is a critical social objective.
- Health and Safety** : Ensuring that water infrastructure promotes public health by preventing waterborne diseases, improving sanitation, and reducing pollution. Safe water systems protect communities from risks associated with poor water quality and inadequate wastewater management.
- Community Engagement**: Water infrastructure projects must be culturally appropriate and sensitive to local practices and traditions. Involving communities in planning, and understanding their values and needs, ensures greater acceptance and long-term sustainability.

Economic Sustainability: Economic sustainability involves ensuring that water infrastructure is financially viable and cost-effective over its entire lifecycle. Key aspects include:

- Life-Cycle Costing** : A holistic economic evaluation of the total costs of water infrastructure from construction through operation and eventual decommissioning. This includes capital expenditures, operating and maintenance costs, and any potential costs related to environmental or social impacts. Life-cycle costing can help identify the most cost-effective solutions for long-term sustainability.
- Resilience to Future Challenges**: Economic sustainability also includes ensuring that water infrastructure is resilient to future economic pressures, such as rising energy costs, inflation, and changing regulatory environments. Designing systems that can evolve with new technological innovations and shifting economic conditions is essential.
- Resource Efficiency and Minimization of Waste** : Reducing the amount of resources required for building and maintaining infrastructure is an important economic consideration. Minimizing waste

generation and improving resource efficiency can lead to cost savings and more sustainable practices.

Technological Sustainability: Technological sustainability ensures that water infrastructure utilizes the latest innovations and techniques to enhance performance, efficiency, and resilience. Key aspects include:

- **Innovative Technologies:** Implementing advanced technologies, such as smart water meters, automated systems for leak detection, and data analytics for monitoring water quality, can greatly improve the efficiency and reliability of water infrastructure.

- **Sustainable Design and Construction Practices:** Incorporating sustainable practices in design, such as green building techniques, low-impact development (LID), and energy-efficient systems, ensures that the infrastructure aligns with sustainable goals.

- **Maintenance and Monitoring:** Developing systems for regular monitoring, maintenance, and upgrades can extend the lifespan of water infrastructure and ensure its ongoing performance.

Principle of Sustainable water infrastructure

- **Water efficiency:** emphasizing on the water saving technology i.e. recycling the used water in township areas, reduce water waste etc.

- **Strategic planning:** planning that considers the cost effectiveness, resources efficiency and community goals of water infrastructure investments

- **Pollution prevention:** Managing and treating the waste water and reducing the flow of harmful chemicals into running water reservoirs, preventing thermal efflux into water etc.

- **Community engagement:** Involving local communities in water conservation and management decision plans which leads to accomplish the sustainable goals effectively.

- **Protection of ecosystem:** Preserving and restoring natural ecosystems such as wetlands and water shed which is essential for maintain the water quality and supporting biodiversity.

Why Use LCA in Sustainable Water Infrastructure?

1. **Holistic Impact Assessment:** Examines all stages of the infrastructure's life cycle, from raw material extraction to disposal.

2. **Environmental Hotspot Identification :** Pinpoints phases with the highest impacts (e.g., energy use in operation or emissions from construction).

3. **Informed Decision-Making :** Helps stakeholders compare design alternatives and prioritize sustainable solutions.

4. **Compliance and Certification :** Aligns with sustainability certifications and regulatory requirements, such as LEED or ISO 14040 standards.

LCA in Water Infrastructure Design and Decision Making In the design and construction of water-related infrastructure, LCA allows decision-makers to evaluate various options and their environmental impacts across the entire life cycle (*ISO 14040:2006*). Common aspects of water-related infrastructure that are evaluated through LCA include:

- **Energy Consumption and Carbon Footprints:** Energy use is a major consideration in the operation of water systems, particularly for pumping, treatment, and distribution. LCA can evaluate which design and material choices minimize energy consumption and emissions (*Crawford & Treloar, 2008*).

- **Water and Material Use :** The sourcing and consumption of water and raw materials are critical to the sustainability of infrastructure projects. LCA can quantify the water and material flows throughout the system's life cycle and help identify areas for improvement (*Gellings, 2009*).

- **Waste Generation and Recycling:** Wastewater treatment and stormwater management systems generate significant volumes of waste and sludge. LCA can assess the potential for recycling or reusing these by-products in other processes, such as agricultural applications or biogas production (*Mutha et al., 2007*).

- **Durability and Maintenance :** Long-term sustainability also involves evaluating the durability and maintenance needs of infrastructure components. Materials and technologies that require less maintenance and have longer life cycles contribute to overall sustainability (*Bai & Sarkis, 2016*). **Challenges and Limitations of LCA for Water Infrastructure** While LCA provides valuable insights, its application to water-related infrastructure faces several challenges:

- **Data Availability :** High-quality data for all life cycle stages can be difficult to obtain, especially for maintenance and decommissioning phases (*Dewulf et al., 2010*).

- **Complexity** : Water systems can be highly complex, involving many components and variables. Modeling these systems accurately in an LCA can be challenging (*Zhao et al., 2017*).
- **Uncertainty and Sensitivity** : LCA results can be sensitive to assumptions made about system boundaries, data inputs, and impact assessment methods. Sensitivity analysis is often necessary to understand how changes in assumptions affect the outcomes (*Venkatesh et al., 2017*).
- **Regional Differences** : Environmental impacts, such as energy consumption and water availability, can vary significantly by region. Local conditions need to be carefully considered when applying LCA to water infrastructure projects (*Zhou et al., 2016*).

Despite these challenges, LCA remains a powerful tool for identifying opportunities to improve the sustainability of water infrastructure and guiding the development of more environmentally friendly and economically viable systems (*Saling et al., 2002*).

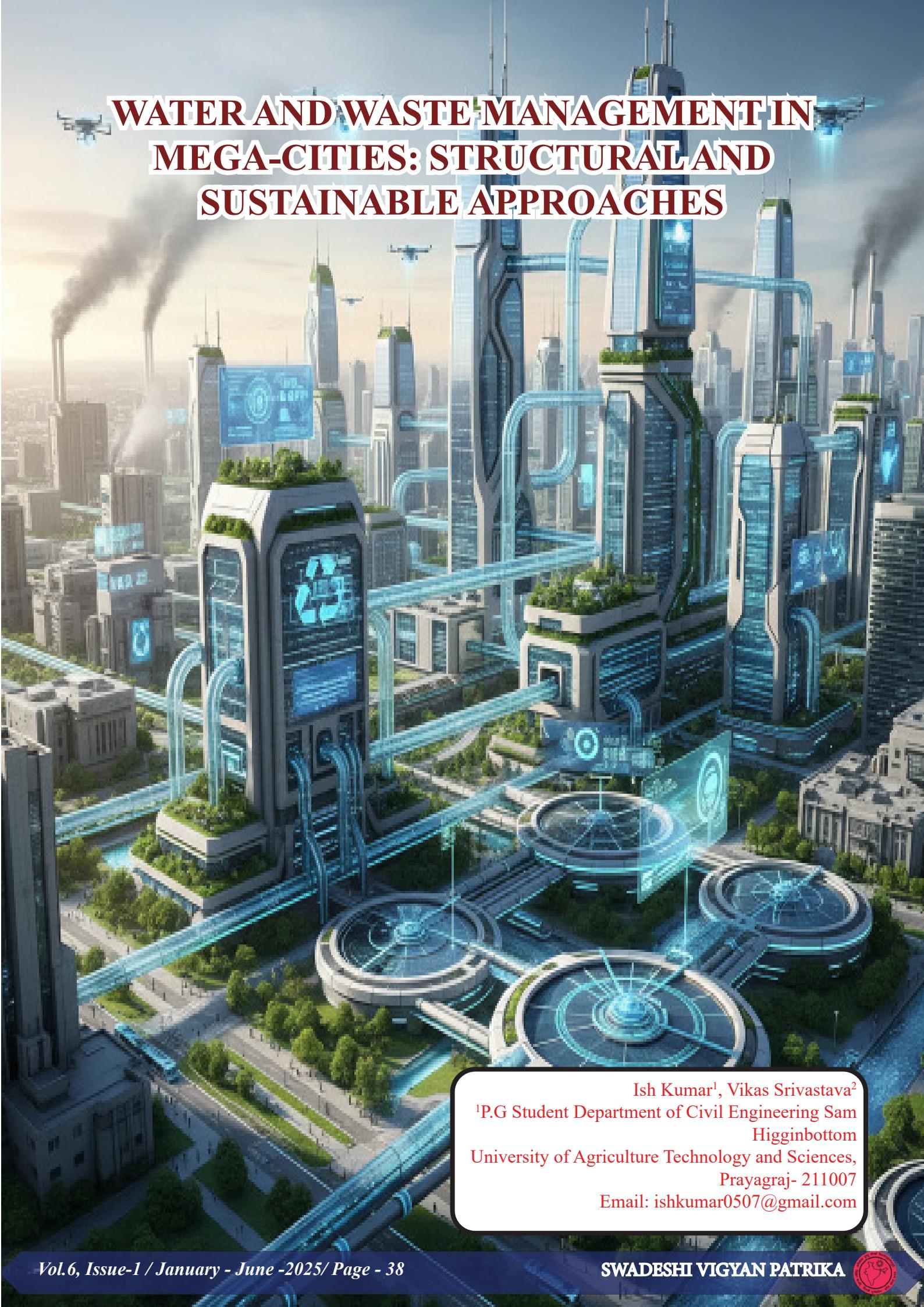
CONCLUSION

In conclusion, Life Cycle Assessment (LCA) offers a comprehensive framework for evaluating the environmental, social, and economic impacts of water infrastructure systems across their entire life cycle. By considering all stages—from raw material extraction to construction, operation, maintenance, and eventual disposal—LCA enables decision-makers to identify opportunities for improving sustainability and reducing environmental footprints. Despite challenges such as data availability, complexity, uncertainty, and regional differences, LCA remains an invaluable tool in the design and management of sustainable water infrastructure. It helps optimize resource use, minimize energy consumption and emissions, and improve waste management practices.

Furthermore, by integrating LCA with other sustainability considerations, such as social equity and economic feasibility, it supports the development of water systems that are not only environmentally friendly but also resilient, cost-effective, and adaptable to local needs. Ultimately, the application of LCA can guide the transition towards more sustainable water management practices, ensuring the availability and quality of water resources for future generations.

REFERENCES :

- Baumann, H., & Tillman, A.-M. (2004). The Hitch Hiker's Guide to LCA: An orientation in life cycle assessment methodology and application. Studentlitteratur.
- Brand, M., et al. (2015). Integrating social, environmental, and economic sustainability in urban water management. *Urban Water Journal*, 12(4), 319-328.
- Bai, C., & Sarkis, J. (2016). Evaluating the environmental sustainability of infrastructure projects using life cycle assessment. *Environmental Impact Assessment Review*, 56, 36-49.
- Crawford, R. H., & Treloar, G. J. (2008). The role of energy in the life cycle assessment of urban water systems. *International Journal of Life Cycle Assessment*, 13(4), 272-279.
- Dewulf, J., et al. (2010). The role of data quality in life cycle assessment: A case study of wastewater treatment systems. *International Journal of Life Cycle Assessment*, 15(2), 137-146.
- Finnveden, G., et al. (2009). The application of life cycle assessment to water and wastewater treatment systems. *Science of the Total Environment*, 407(8), 2925-2934.
- Goh, T. L. (2016). Challenges and solutions in sustainable water infrastructure management. *Water Resources Management*, 30(8), 2795-2810.
- Gleick, P. H. (2003). Water use. *Annual Review of Environment and Resources*, 28, 275-314.
- Gellings, C. W. (2009). The role of water and material use in sustainable infrastructure. *Environmental Management*, 43(6), 1023-1034.
- Hernandez-Sancho, F., et al. (2010). Environmental life cycle assessment of water reuse systems. *Desalination*, 250(2), 553-559.
- Hughes, T., et al. (2012). Urban water systems: Sustainability challenges and opportunities. *Water Research*, 46(16), 4707-4717.
- ISO 14040:2006. Environmental management – Life cycle assessment – Principles and framework.
- Mutha, S. S., et al. (2007). Life cycle assessment of wastewater treatment systems and opportunities for sustainability. *Environmental Science & Technology*, 41(17), 6155-6162.



- Saling, P., et al. (2002). Life cycle assessment in practice: Case studies in the water and wastewater industries. *Journal of Industrial Ecology*, 6(1), 69-81.
- Savenije, H. H. G., & van der Zaag, P. (2008). Water as an economic good: The value of pricing and pricing as a tool for water management. *Journal of Water Resources Planning and Management*, 134(5), 397-404.
- Schmidt, J. H., et al. (2012). The role of interpretation in life cycle assessment: Addressing uncertainties and decision-making challenges. *Journal of Cleaner Production*, 35, 207-215
- UN Water. (2018). Water for sustainable development: The United Nations World Water Development Report 2018. UNESCO.
- Venkatesh, G., et al. (2017). Uncertainty and sensitivity analysis in life cycle assessment: An overview. *Environmental Impact Assessment Review*, 62, 43-55.
- Zimmerman, J. B., et al. (2013). Life cycle assessment of integrated urban water systems: Evaluating sustainable water management practices. *Environmental Science & Technology*, 47(8), 3692-3700.
- Zhao, X., et al. (2017). Challenges in modeling complex water systems for life cycle assessment: A case study in integrated water management. *Journal of Cleaner Production*, 143, 1263-1274.
- Zhou, H., et al. (2016). Regional variation in environmental impacts of water systems: Implications for life cycle assessment. *Water Resources Management*, 30(5), 1701-1713.

WATER AND WASTE MANAGEMENT IN MEGA-CITIES: STRUCTURAL AND SUSTAINABLE APPROACHES

Ish Kumar¹, Vikas Srivastava²

¹P.G Student Department of Civil Engineering Sam
Higginbottom

University of Agriculture Technology and Sciences,
Prayagraj- 211007

Email: ishkumar0507@gmail.com

ABSTRACT

The rapid growth of mega-cities across the globe presents both significant challenges and opportunities for urban planning, particularly in the domains of water and waste management. These cities, with populations exceeding 10 million, are at the forefront of facing issues like water scarcity, pollution, and inefficient waste management systems. The increasing urbanization exacerbates environmental and infrastructural pressures, making it essential to adopt structural and sustainable solutions that focus on resource optimization, waste reduction, and environmental conservation. This paper explores the various structural strategies—such as smart water grids, decentralized waste treatment, and waste-to-energy technologies—while also examining the role of sustainable practices like the circular economy and green infrastructure. Through case studies, the paper identifies best practices in water and waste management and proposes a framework that integrates engineering solutions, policy development, and community involvement for a more resilient urban future.

1. INTRODUCTION

Mega-cities, often defined by their sprawling urban landscapes and substantial populations, have become focal points of global development, accounting for a significant share of the world's economic output. However, their rapid expansion poses a series of challenges to the sustainability of essential services, particularly water supply and waste management. Water and waste are inextricably linked, and inefficiencies in one sector can exacerbate problems in the other, leading to environmental degradation, public health risks, and economic losses. Understanding and addressing these challenges requires a multi-dimensional approach, integrating structural solutions and sustainable strategies to ensure the long-term livability of mega-cities.

1.1 THE NEED FOR EFFECTIVE WATER AND WASTE MANAGEMENT

The primary drivers for the need for efficient water and waste management in mega-cities are urbanization, increased resource consumption, climate change, and demographic trends. In densely populated areas, the pressure on water systems and waste disposal mechanisms is immense. Furthermore, ineffective management of these systems can result in pollution, flooding, and the depletion of water resources, exacerbating poverty, inequality, and disease spread. Therefore, transforming current practices into sustainable and resilient frameworks

is crucial for the survival and growth of these cities.

2. STRUCTURAL APPROACHES TO WATER AND WASTE MANAGEMENT

Structural approaches to water and waste management involve the development of robust physical infrastructures designed to handle increasing demand. These systems aim to maximize the efficiency of water distribution and waste processing while minimizing the environmental footprint.

2.1 WATER SUPPLY AND DISTRIBUTION SYSTEMS

Mega-cities require complex water supply and distribution systems to meet the needs of their growing populations. These systems often include reservoirs, pipelines, treatment plants, and pumping stations that must be carefully designed and maintained to ensure efficient service delivery.

- **Integrated Water Resource Management (IWRM):**

An approach that promotes coordinated development and management of water, land, and related resources. In mega-cities, IWRM can help manage the complex interplay between urban growth, water availability, and environmental sustainability.

- **Smart Water Networks:** The integration of advanced sensors, metering, and real-time data analytics into water distribution systems can improve monitoring, leak detection, and resource management.

Smart grids can enhance system resilience by providing quick responses to changing conditions, such as increased demand or infrastructure failure.

- **Desalination Technologies :** With freshwater sources often over-exploited, desalination of seawater offers an alternative method of increasing the available water supply. Mega-cities located near coastlines, such as Dubai and Singapore, have integrated desalination into their water supply networks to reduce reliance on freshwater.

2.2 WASTEWATER TREATMENT AND REUSE

The treatment and reuse of wastewater is a critical component of waste management in mega-cities, especially in water-scarce regions. Wastewater treatment systems are designed to remove pollutants from used water to make it safe for reuse in agriculture, industrial processes, or even potable water supply.

- **Decentralized Wastewater Treatment:** In densely populated mega-cities, decentralized systems, such as small-scale treatment plants and local greywater recycling, can reduce the burden on central treatment plants while increasing water reuse opportunities.
- **Membrane Bioreactor (MBR) Technology:** MBR combines biological treatment with membrane filtration, resulting in highly treated wastewater that can be used for non-potable applications, such as irrigation or industrial cooling.

2.3 WASTE MANAGEMENT INFRASTRUCTURE

As urban populations grow, the amount of waste generated increases exponentially. Efficient collection, sorting, and disposal are essential to prevent the spread of diseases and environmental contamination.

- **Waste-to-Energy (WTE) Technologies:** Waste incineration can convert non-recyclable waste into electricity, reducing the amount of waste sent to landfills. This approach also helps reduce greenhouse gas emissions by diverting methane production from landfills.
- **Circular Economy :** Mega-cities can benefit from transitioning to a circular economy model, where waste materials are seen as resources. Implementing systems to recycle and reuse materials at all stages of the waste stream—from construction debris to household waste—can reduce the burden on landfills and encourage sustainable consumption.
- **Zero Waste Cities :** Cities like Kamikatsu (Japan) and Capannori (Italy) have pioneered zero waste initiatives. By focusing on reducing waste at

the source and promoting composting, recycling, and upcycling, these cities have achieved significant reductions in the amount of waste sent to landfills.

3. SUSTAINABLE APPROACHES TO WATER AND WASTE MANAGEMENT

Sustainability in water and waste management goes beyond structural solutions; it also involves adopting practices that ensure environmental, social, and economic equity. Sustainable approaches are vital to achieving long-term urban resilience and reducing ecological footprints.

3.1. ECOSYSTEM-BASED APPROACHES

Nature-based solutions (NBS) are gaining traction as part of sustainable water and waste management in mega-cities. These solutions rely on the services provided by natural ecosystems to improve water management, reduce waste, and mitigate climate impacts.

- **Urban Green Infrastructure :** Rain gardens, green roofs, and permeable pavements are examples of urban green infrastructure that can help absorb stormwater, reduce urban heat island effects, and improve water quality. By mimicking natural processes, these systems reduce the need for costly and energy-intensive grey infrastructure.
- **Constructed Wetlands :** These engineered systems use wetland plants to treat wastewater. They are particularly useful in treating sewage and industrial wastewater while also providing ecological benefits such as habitat creation and biodiversity preservation.

3.2. COMMUNITY-BASED APPROACHES

Engaging local communities in water and waste management fosters a sense of ownership and accountability, leading to better outcomes. Community-based solutions focus on education, participation, and local innovation.

- **Rainwater Harvesting :** In many developing mega-cities, communities have implemented simple rainwater harvesting systems to capture and store rainwater for household use. This decentralized approach reduces pressure on central water systems and enhances water security.
- **Waste Segregation at Source :** In cities such as Mumbai, community-led initiatives have successfully implemented waste segregation at source, leading to higher recycling rates and reduced landfill waste. These initiatives often include educational campaigns and incentives to promote participation.

- **Public-Private Partnerships (PPPs) :** Collaborations between governments, private enterprises, and civil society organizations can improve water and waste management outcomes. For example, partnerships in Buenos Aires and Cape Town have facilitated improved waste collection services, better recycling programs, and enhanced water distribution networks.

3.3. POLICY AND GOVERNANCE

Effective governance and policy frameworks are crucial to the implementation of both structural and sustainable approaches. Governments must develop and enforce regulations that incentivize conservation, waste reduction, and the adoption of clean technologies.

- **Water Pricing :** Proper pricing mechanisms can encourage efficient water use. By introducing tiered pricing models, cities can encourage conservation and ensure that water is allocated to those who need it most, rather than being squandered in wasteful practices.
- **Extended Producer Responsibility (EPR):** EPR policies can incentivize producers to design products with less environmental impact, reduce waste generation, and ensure that products are recyclable at the end of their lifecycle.

4. CASE STUDIES OF SUCCESSFUL WATER AND WASTE MANAGEMENT IN MEGA-CITIES

4.1. SINGAPORE

Singapore is a global leader in water and waste management. The city-state has integrated sustainable practices into its water system through technologies such as NEWater (recycled wastewater), desalination plants, and advanced water treatment processes. The city's commitment to sustainability is also reflected in its waste management policies, where it has implemented one of the world's most efficient waste-to-energy systems, diverting nearly 60% of its waste from landfills.

4.2. CURITIBA, BRAZIL

Curitiba is known for its innovative waste management and urban planning systems. The city operates a comprehensive recycling program and has integrated green spaces, such as parks and wetlands, to manage stormwater and reduce flooding. The waste management program includes waste segregation at source, which helps reduce landfill waste and contributes to the city's overall sustainability efforts.

4.3. TOKYO, JAPAN

Tokyo has embraced waste-to-energy technologies, with more than 20 waste incineration plants that generate electricity. The city has also invested in advanced recycling programs and public education campaigns that encourage citizens to reduce, reuse, and recycle. Tokyo's comprehensive approach to waste management has led to a recycling rate of over 20%.

4.4. COPENHAGEN

Copenhagen is committed to becoming a carbon-neutral city by 2025. Its waste management approach focuses on reducing waste generation, increasing recycling rates, and utilizing waste-to-energy plants to generate district heating. The city also integrates green infrastructure solutions to manage water resources sustainably.

5. CONCLUSION

The challenges of water and waste management in mega-cities require a multi-faceted approach that combines structural solutions with sustainable practices. By integrating advanced technologies, community involvement, and policy innovation, cities can address the pressures of rapid urbanization while fostering environmental resilience. The case studies of Singapore, Curitiba, and Tokyo provide valuable insights into how integrated and forward-thinking strategies can lead to more sustainable urban environments. In the face of climate change and growing populations, it is essential for mega-cities to adopt both structural and sustainable approaches to ensure the health and well-being of their inhabitants and the planet as a whole.

REFERENCES

- Gupta, A., & Padhy, S. (2018). Smart Water Management Systems. *Water Science and Technology*, 77(6), 1552-1564.
- Swilling, M., & Annecke, E. (2012). The Age of Sustainable Cities: Urban Transformation in the 21st Century. Earthscan.
- Tchobanoglous, G., & Kreith, F. (2002). *Handbook of Solid Waste Management*. McGraw-Hill.
- United Nations (2018). *World Urbanization Prospects: The 2018 Revision*. UN Population Division.
- World Resources Institute (2017). *Water Stress and the Future of Cities*. WRI.org.

प्रकृति से तकनीक तक : मुलेठी—आधारित सिल्वर नैनोकणों से स्वच्छ ऊर्जा की दिशा में कदम

डॉ. राखी खंडेलवाल¹, डॉ. श्याम सुंदर शर्मा
महिला अभियांत्रिकी महाविद्यालय अजमेर
Email : rakhikhandelwal@gweca.ac.in

लेखक परिचय

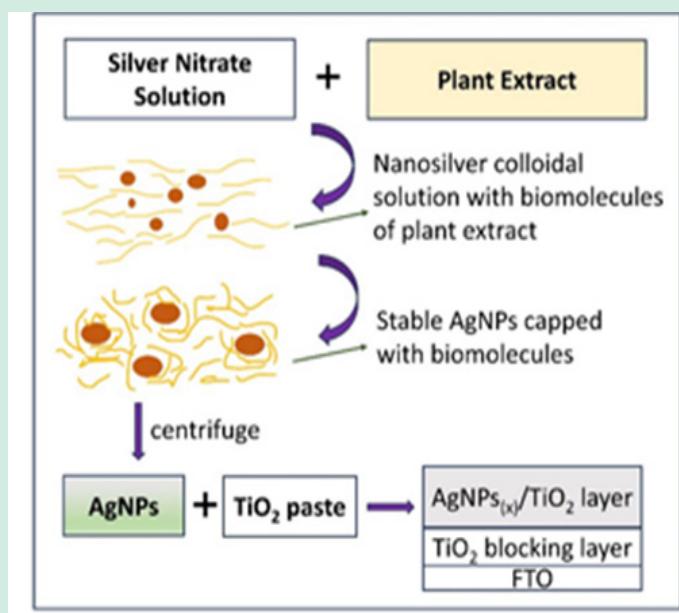
लेखिका वर्तमान में राजकीय महिला अभियांत्रिकी महाविद्यालय, अजमेर के रसायन शास्त्र विभाग में वरिष्ठ प्राध्यापिका के पद पर कार्यरत हैं। उनके अब तक 15 से अधिक शोध पत्र प्रतिष्ठित राष्ट्रीय एवं अंतर्राष्ट्रीय शोध पत्रिकाओं में प्रकाशित हो चुके हैं तथा उन्होंने 30 से अधिक राष्ट्रीय और अंतर्राष्ट्रीय संगोष्ठियों एवं सम्मेलनों में अपने शोध कार्य प्रस्तुत किए हैं। डॉ. खंडेलवाल ने राष्ट्रीय एवं अंतर्राष्ट्रीय प्रकाशकों के माध्यम से चार पुस्तकों का लेखन किया है और नैनोकणों पर आधारित दो शोध परियोजनाएँ सफलतापूर्वक पूर्ण की हैं। उनका अनुसंधान कार्य पर्यावरण—अनुकूल रासायनिक प्रक्रियाओं और नैनो प्रौद्योगिकी के माध्यम से औद्योगिक रासायनिक चुनौतियों के नवाचारी समाधान विकसित करने पर केंद्रित है।

लेखक वर्तमान में अजमेर स्थित राजकीय महिला अभियांत्रिकी महाविद्यालय में भौतिकी विभाग में वरिष्ठ प्राध्यापक हैं। उन्होंने राजस्थान विश्वविद्यालय, जयपुर से ऑर्गेनिक सोलर सेल के क्षेत्र में पीएच.डी. की उपाधि प्राप्त की है। अंतर्राष्ट्रीय पत्रिकाओं और अंतर्राष्ट्रीय एवं राष्ट्रीय सम्मेलनों की संगोष्ठियों में उनके 90 से अधिक शोध प्रकाशन प्रकाशित हो चुके हैं। विज्ञान एवं प्रौद्योगिकी विभाग, भारत सरकार द्वारा डॉ. शर्मा को युवा वैज्ञानिक परियोजना पुरस्कार से भी सम्मानित किया जा चुका है।

परिचय

इस शोध में मुलेठी (*Glycyrrhiza Glabra*) की जड़ के अर्क का उपयोग करके सिल्वर नैनोकणों (AgNPs) को एक हरित संश्लेषण विधि से तैयार किया गया। यह एक पूरी तरह पर्यावरण अनुकूल, संपोषणीय और कम लागत वाली प्रक्रिया है, जिसमें किसी भी प्रकार के रासायनिक पदार्थ या हानिकारक विलायक की जरूरत नहीं होती। मुलेठी के अर्क को जब एक निश्चित अनुपात में सिल्वर नाइट्रेट विलयन के साथ मिलाया जाता है तो मुलेठी के अर्क में उपस्थित प्राकृतिक रसायन (फाइटोकेमिकल्स) सिल्वर नाइट्रेट में मौजूद सिल्वर आयनों को उपचारित करके सिल्वर कणों में बदलते हैं, तत्पश्चात ये सिल्वर नैनोकणों में बदलते हैं। मुलेठी अर्क में मौजूद कुछ प्रोटीन्स स्टेबलाइजिंग एजेंट के रूप में कार्य करते हैं जिससे स्थायी सिल्वर नैनो कणों का निर्माण होता है।

इन नैनोकणों को फिर टाइटेनियम डाइऑक्साइड (TiO_2) में मिलाया गया, जिससे डाई-सेंसिटाइज्ड सोलर सेल (DSSC) के लिए बेहतर फोटोऐनोड बनाए जा सके। इस शोध का मुख्य उद्देश्य मुलेठी की जड़ के अर्क से हरित विधि द्वारा सिल्वर नैनोकणों का संश्लेषण कर पर्यावरण अनुकूल, सस्ती और टिकाऊ प्रक्रिया विकसित करना था। इन नैनोकणों को टाइटेनियम डाइऑक्साइड में सम्मिलित कर डाई-सेंसिटाइज्ड सोलर सेल के लिए प्रभावी फोटोऐनोड तैयार किए गए।¹ शोध का लक्ष्य सौर ऊर्जा के अधिकतम उपयोग, लागत में कमी और पर्यावरण संरक्षण को सुनिश्चित करना था।


शोध आवश्यकता

वर्तमान समय में विश्व की अधिकांश ऊर्जा आवश्यकताएँ कोयला, पेट्रोलियम और प्राकृतिक गैस जैसे पारंपरिक स्रोतों से पूरी की जा रही हैं। इन स्रोतों का अत्यधिक उपयोग न केवल पर्यावरण प्रदूषण और ग्रीनहाउस गैसों की वृद्धि का कारण बन रहा है, बल्कि ये सीमित मात्रा में उपलब्ध होने के कारण शीघ्र ही समाप्त होने की कगार पर हैं। ऐसी स्थिति में वैकल्पिक, स्वच्छ और नवीकरणीय ऊर्जा स्रोतों की खोज अत्यंत आवश्यक हो गई है। सौर ऊर्जा एक असीमित और पर्यावरण अनुकूल विकल्प के रूप में सबसे उपयुक्त समाधान प्रस्तुत करती है।

डाई-सेंसिटाइज़ेड सोलर सेल (DSSC) पारंपरिक सिलिकॉन आधारित सौर सेल्स की तुलना में कम लागत वाले, हल्के, लचीले और अर्धपारदर्शी होते हैं, जिससे उनका उपयोग विविध परिस्थितियों में किया जा सकता है।¹⁻⁴ इसके अलावा, ये कम रोशनी या बादलों वाले वातावरण में भी प्रभावी ढंग से कार्य करते हैं।

इस शोध में TiO_2 आधारित सौर सेल्स को सिल्वर नैनोकणों के साथ संयोजित किया गया, ताकि उनकी प्रकाश अवशोषण क्षमता, इलेक्ट्रॉन परिवहन दक्षता और समग्र ऊर्जा रूपांतरण दर में सुधार किया जा सके।⁵⁻⁶ इस प्रकार, यह अध्ययन स्वच्छ ऊर्जा के क्षेत्र में अधिक कुशल और स्थायी तकनीक के विकास की दिशा में एक महत्वपूर्ण कदम प्रस्तुत करता है।

हरित संश्लेषण और परीक्षण

चित्र 1 AgNPs के लिए हरित संश्लेषण की योजना और AgNPs - डोड फोटोएनोड का निर्माण

मुलेरी (*Glycyrrhiza glabra*) के अर्क की सहायता से संश्लेषित सिल्वर नैनोकणों (AgNPs) का गहन विश्लेषण विभिन्न उन्नत वैज्ञानिक तकनीकों के माध्यम से किया गया।

UV-Visible स्पेक्ट्रोस्कोपी द्वारा 372 nm पर विशिष्ट सतही प्लाज्मोन अनुनाद (SPR) देखा गया, जो सिल्वर नैनोकणों के सफल निर्माण की स्पष्ट पुष्टि करता है।

X-ray diffraction (XRD) विश्लेषण से यह ज्ञात हुआ कि तैयार किए गए नैनोकण फेस-सेंटर क्यूबिक (FCC) संरचना वाले हैं, जिससे उनकी उच्च क्रिस्टलीय और सुसंगठित संरचना का पता चलता है।

Transmission Electron Microscopy (TEM)

अध्ययन से यह पाया गया कि इन नैनोकणों का आकार लगभग 20 से 50 नैनोमीटर के बीच है।

इसके अतिरिक्त, अलग अलग पीएच पर संश्लेषण करके यह भी निष्कर्ष निकाला गया कि पीएच 4.6 पर संश्लेषित नैनोकण सर्वाधिक रिस्थरता और दक्षता प्रदर्शित करते हैं, जबकि इससे अधिक या कम pH मान पर नैनोकणों के निर्माण की क्षमता और गुणवत्ता में उल्लेखनीय कमी देखी गई।

इस प्रकार, यह नियंत्रित परिस्थितियों में उच्च गुणवत्ता वाले सिल्वर नैनोकण प्राप्त करने का एक प्रभावी तरीका प्रदान करता है।

संरचना और विशेषताएँ

अध्ययन में पाया गया कि मुलेरी से बने सिल्वर नैनोकण (AgNPs) आकार में गोल और चमकदार क्रिस्टल जैसे दिखाई देते हैं। जब इन नैनोकणों को टाइटेनियम डाइऑक्साइड (TiO_2) के साथ मिलाया गया, तो उसकी सतह अधिक छिद्रयुक्त (porous) बन गई। इस बदलाव से सौर सेल में इस्तेमाल होने वाला रंग (डाई) बेहतर तरीके से सतह पर चिपक सका, जिससे प्रकाश का अवशोषण बढ़ा और ऊर्जा की बर्बादी (इलेक्ट्रॉनों का पुनर्संयोजन) कम हुई। इसके परिणामस्वरूप सौर सेल की कार्यक्षमता में उल्लेखनीय सुधार देखा गया।

* जब 0.5 mg सिल्वर नैनोकण मिलाए गए, तो दक्षता में लगभग 15.5% की वृद्धि हुई।

* वहीं, 1.0 mg नैनोकण जोड़ने पर दक्षता लगभग 35%: तक बढ़ गई।

यह सुधार सिल्वर नैनोकणों के Localized Surface Plasmon Resonance (LSPR) नामक प्रभाव के कारण हुआ, जो प्रकाश को अधिक मात्रा में आकर्षित करता है।

सौर सेल की कार्यक्षमता जानने के लिए J-V परीक्षण किए गए, जिनके परिणाम काफी उत्साहजनक रहे। परीक्षण से यह पता चला कि जब टाइटेनियम डाइऑक्साइड (TiO_2) में सिल्वर नैनोकण (AgNPs) मिलाए गए, तो सौर सेल की बिजली उत्पादन क्षमता में स्पष्ट बढ़ोतरी हुई।

सौर सेल का प्रकार	दक्षता (Efficiency)	सुधार
साधारण TiO_2 DSSC	3.02%	-
0.5 mg AgNPs - TiO_2 DSSC	3.49%	+15.56%
1.0 mg AgNPs - TiO_2 DSSC	4.09%	+35.43%

इसके अलावा, इन सेल्स का Fill Factor (FF) भी बढ़कर 0.64 तक पहुँच गया, जो दर्शाता है कि सेल में चार्ज (इलेक्ट्रॉन) का प्रवाह अधिक सुचारू रूप से हुआ और ऊर्जा की हानि कम हुई। Electrochemical Impedance Spectroscopy (EIS) परीक्षण से यह भी सिद्ध हुआ कि सिल्वर नैनोकणों वाले DSSC में इलेक्ट्रॉनों का पुनर्संयोजन (energy loss) काफी कम होता है। इसका सीधा मतलब है कि ऐसे सेल्स अधिक करंट और अधिक बिजली उत्पन्न करने में सक्षम हैं। सरल शब्दों में, सिल्वर नैनोकण सौर सेल को "अधिक रोशनी पकड़ने" में मदद करते हैं, जिससे वह अधिक बिजली उत्पन्न कर पाता है।

मुख्य उपलब्धियाँ

1. 20–50 nm आकार के AgNPs सफलतापूर्वक संश्लेशित किए गए।
2. DSSC की दक्षता 3.02% से बढ़कर 4.09% हो गई।
3. प्रकाश अवशोषण, इलेक्ट्रॉन जीवनकाल और चार्ज ट्रांसफर में सुधार दर्ज हुआ।
4. यह प्रक्रिया पूरी तरह हरित, कम लागत वाली और संपोषणीय है।

निश्कर्ष : स्वच्छ ऊर्जा की नई दिशा

“जब विज्ञान और प्रकृति का संगम होता है, तब नवाचार जन्म लेता है।” इस शोध ने यह सिद्ध कर दिया कि मुलेठी जैसी साधारण जड़ी-बूटी से भी अत्याधुनिक सौर तकनीक में सुधार किया जा सकता है। ग्रीन सिंथेसिस द्वारा बनाए गए सिल्वर नैनोकणों ने न केवल DSSC की दक्षता बढ़ाई, बल्कि इसे अधिक टिकाऊ और पर्यावरण अनुकूल, भी बनाया। मुलेठी से बने ये ग्रीन सिल्वर नैनोकणों स्वच्छ ऊर्जा के क्षेत्र में एक नई उम्मीद हैं। यह शोध दिखाता है कि प्राकृतिक स्रोतों से नैनोकणों को बनाकर हम भविष्य की ऊर्जा समस्याओं का पर्यावरण अनुकूल, समाधान खोज सकते हैं।

संदर्भ

1. Khushboo Sharma, Rakhi Khandelwal, Shyam Sunder Sharma, Jaymin Ray and Nandu B. Chaure: J Mater Sci: Mater Electron (2025) 36:1057 <https://doi.org/10.1007/s10854-025-15071-9>
2. K. Sharma, V. Sharma, S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13(1), 1–46 (2018)
3. G.S. Lotey, N.K. Verma, Synthesis and characterization of BiFeO₃ nanowires and their applications in dye-sensitized solar cells. Mater. Sci. Semicond. Process. 21, 206–211 (2014). <https://doi.org/10.1016/j.mssp.2013.11.029>
4. N.K. Verma, I. Kaur, K. Kaur, G.S. Lotey, Enhanced efficiency of Au-deposited BiFeO₃ nanoparticles-based dye-sensitized solar cells. Adv. Mater. Res. 856, 184–187 (2014). <https://doi.org/10.4028/www.scientific.net/AMR.856.184>
5. F. Khojasteh, M.R. Mersagh, H. Hashemipour, The influences of Ni, Ag-doped TiO₂ and SnO₂, Ag-doped SnO₂/TiO₂ nanocomposites on recombination reduction in dye J Mater Sci: Mater Electron(2025) 36:1057 synthesized solar cells. J. Alloy. Compd. 890, 161709 (2022). <https://doi.org/10.1016/j.jallcom.2021.161709>
6. M.I. Khan, B. Mehmood, G.M. Mustafa, K. Humaiyoun, N. Alwadai, A.H. Almuqrin, M. Iqbal, Effect of silver (Ag) ions irradiation on the structural, optical and photovoltaic properties of Mn doped TiO₂ thin films based dye sensitized solar cells. Ceram. Int. 47(11), 15801–15806 (2021). <https://doi.org/10.1016/j.ceramint.2021.02.152>

AMLA FRUIT: AN ANCIENT TRADITIONAL MEDICINAL PLANT AS A POWERFUL ANTIMUTAGENS AND ANTICARCINOGENIC AGENTS

Dr. Manoj Kumar Rawat
Department of Botany
Samrat Prithviraj Chauhan Government College
Ajmer, Rajasthan (India)
Email: manojrwt4@gmail.com

AUTHOR'S INTRODUCTION

Author's is an associate professor of Botany, presently working at Samrat Prithviraj Chauhan Government College Ajmer, Rajasthan. He has more than 23 years of teaching experience. He completed his Ph.D. from the Department of Botany, Maharshi Dayanand Saraswati University, Ajmer (Rajasthan) under the Supervision of Former Head and Professor Suresh Kumar Mahna, Department of Botany working in the field of antimutagenicity. He has also completed a Minor Research Project as a principal investigator in the field of antimutagenic activity of natural fruit extract of *Emblica officinalis* (*Amla*) and *Terminalia chebula* (*Myrobalan or Harar*) in the *Cicer arietinum* (*Gram*). His areas of interest are Plant Morphology, Phytotaxonomy, Phytopathology, Microbiology, Genetics and Biotechnology. Dr. Rawat has published a book entitled "Angiosperm Morphology", many research papers in national and international peer reviewed journals. The Society of Life-Sciences, Satna (Madhya Pradesh) has awarded him an honorary fellowship (F. S. L. Sc.) for his contribution in the field of life sciences. He has participated and presented research papers in many international and national conferences.

ABSTRACT

Several carcinogens and mutagens are present in the environment, which have potential to trigger DNA damages, leading to lethal mutations or cancers of many types. These chemicals are alternatively termed as genotoxins. During the past decades, large numbers of genotoxic chemicals have been detected in foods, medicines, cosmetics, insecticides and in the potable water, posing direct threats to human health and biosphere. Thus, a search for antimutagens with potentiality to neutralize or mitigate harmful effects of the mutagenic agents is inevitable. Further, many of the plant species have certain compounds which have antimutagenic activity to be tapped against toxicity of mutagens.

Keeping in mind the harmful effects of genotoxin in living cells and potentiality of botanicals to nullify their adverse impact, present study has been undertaken to evaluate antimutagenic properties of aqueous fruit extract of *Emblica officinalis* Gaertn. (*Amla*) against mutagenicity of sodium azide (NaN_3) in *cicer arietinum* L.

KEY WORDS : Amla fruit, carcinogens, mutagens, sodium azide (NaN_3) and antimutagens.

INTRODUCTION

During the past few decades, a wide variety of chemical mutagens and carcinogens have been detected in foods, medicines, cosmetics, insecticides and even in the water which are utilized regularly. Some mutagens act directly on plant and animal cells to produce mutations and others act after undergoing their modifications by other factors. Many of the indirect mutagens are metabolically activated by enzymes in organs or tissues. Mutations are the cause of innate metabolic defects in cellular systems, triggering morbidity and mortality in living organisms. A plethora of synthetic and natural substances, apart from various genotoxic physical and biological agents, are known to act as mutagenic, co-carcinogenic and carcinogenic agents. The mutagenic effects of genotoxic chemicals are additive, cumulative and sometimes irreversible (Hartl *et al.*, 1994). The group of chemicals that cause cancer in man and animals are collectively referred to as carcinogens. Environmental pollution caused by genotoxic chemicals is also associated with increased risk of cancer.

There is increasing evidence that mutations in somatic cells are not only involved in the carcinogenesis but can also cause genetic disorders like atherosclerosis, heart diseases and several other degenerative disorders (De Flora *et al.*, 1996). The term antimutagen was used originally to describe those agents that reduce the frequency or rate of spontaneous or induced mutations independent of the mechanisms involved (Novick and Szilard, 1952). Kada (1978), the pioneer in this field reported in an antimutagenesis study some effective factors in vegetables and fruits which inactivate the mutagenic action of products of amino acid pyrolysis and referred to these as a new term "desmutagens". These factors directly inactivate the mutagens or their precursors and must be considered only as apparent antimutagens. In succession, the factors which are included in the process of mutagenesis or damaged DNA repairing leading to decrease the frequency of mutation are known as "bio-antimutagens" (Kada, 1983). These are regarded as true antimutagens. Since the concept of antimutagens developed in the 1950s, about 200 compounds are known to have varied degrees of antimutagenic property (Clarke and Shankel, 1975).

A search for antimutagens / anticarcinogens is quite necessary to neutralize the effects of a large number of chemicals present in our environment which are carcinogenic, mutagenic or teratogenic. One

of the strategies involves the screening of plants for natural plant based antimutagens (Kada *et al.*, 1982). The neutralization of a large number of chemicals in our environment which are carcinogenic, mutagenic or teratogenic in nature by botanicals is the main thrust area of the research in the field of antimutagens / anticarcinogens.

Plants and plant based products are been used as a source of medicines since long. One of the best ways to minimize the detrimental effects of mutagens is the use of natural antimutagens. Naturally occurring antimutagenic principles present in plants, human diet and other sources have protective effects against mutagens. These include flavonoids, phenolics, coumarins, carotenoids, anthraquinones, tannins, saponins and many more (Bhattacharya, 2011). Consumption of fruits and vegetables is considered essential for good health among human beings. Moreover, scientific studies indicate that diets high in fruits and vegetables are effective in protecting humans from a number of diseases including cancer. Numerous studies have been carried out in the last few decades in order to identify compounds that might protect humans against DNA damage and its consequences. There are continuous efforts all over the world to explore the rich biodiversity of edible as well as medicinal plants and other edible non-toxic plants in pursuit of the most effective phytoantimutagens which belong to a variety of chemical groups. Many of these substances elicit, apart from their antimutagenic and anticarcinogenic properties, additional beneficial effects such as activation of the immune systems and protection against cardiovascular disease (Middleton and Kandaswami, 1993).

Keeping in mind the antimutagenic and anticarcinogenics properties of botanicals, present study is undertaken to explore the antimutagenic property of fruit of *Emblica officinalis* Gaertn. (*Amla*) against the sodium azide treated mutagenised *Cicer arietinum* L. seeds.

MATERIALS AND METHODS

1. EXPERIMENTAL PLANT :

Botanical Name - *Cicer arietinum L.*

Common Name - Chick pea / Bengal gram

Family - Fabaceae

Sub-Family - Papilionaceae

Cicer arietinum L. is one of the widely grown and consumed legumes in the world and a cheap source of high quality protein. It has better protein quality than other legumes such as pigeon pea, black

gram and green gram (*Kaur and Singh, 2005*). Besides proteins, it is a good source of carbohydrate, minerals and trace elements.

2. CHEMICAL MUTAGEN

Sodium azide (NaN_3 , pH 6.0), a miscellaneous nitrogen compound has been used as a chemical mutagen. Desired concentrations used for seed treatments, i.e., (0.0004M, 0.0008M, 0.0010M, 0.0020M and 0.0040M) were prepared using phosphate buffer, pH 6.0 as a solvent.

3. NATURAL ANTIMUTAGEN

In the present investigation fruit extract of amla is their antimutagenic activity against mutagenic effects of NaN_3 . The selected plant species, solvent used for preparation of desired concentration levels, the concentration levels used in the experiments and a brief description of the selected plant species is as follows-

AMLA (*EMBLICA OFFICINALIS GAERTN*) FRUIT EXTRACT

Solvent used - Distilled water.

Concentrations used for seed treatments- 0.50% and 1.00%

Fig 1 : Amla plant

Amla (Figure 1), botanically known as *Emblica officinalis* Gaertn. (*Syn. Phyllanthus emblica L.*), belongs to the family Euphorbiaceae. It is commonly known as Indian gooseberry or amla, is a widely consumed fruit in India and other South Asian countries for centuries. Amla fruit and its parts (seed or pulp) are used in cooking to prepare chutneys, candies, pickles and vegetable dishes. It is a powerhouse of vitamin C, with amounts ranging from 470 to 700 mg per 100g. Therefore, fruits of this medicinal plant have many well known therapeutic properties, viz., anticarcinogenic/antimutagenic, antidiabetic, antipyretic, antitussive, liver treatment, heart trouble, ulcer, anemia, antioxidant,

immunomodulatory, analgesic, cytoprotective and gastro-protective. It is often used in the form of Triphla which is an herbal formulation containing fruits of *E. officinalis*, *Terminalia chebula* (*Myrobalan or Harar*) and *Terminalia belerica* (*Bahera*) in equal proportions.

4. METHODOLOGY

1. PREPARATION OF THE FRUIT EXTRACTS

100 g of air dried fruits of Amla was powdered and soaked separately in 150 ml of distilled water for 24hrs. The extract was filtered and centrifuged at 6,000 rpm for 30 minutes and supernatant was collected and diluted with water to get its 0.50% and 1.00% concentrations for further experimentations.

2. MODE OF TREATMENT

Dry pure line viable seeds of *C. arietinum* obtained from Agricultural Farm, Bundi were surface sterilized with 0.1% (w/v) mercuric chloride (HgCl_2) solution for 3 min. The seeds were thoroughly washed with sterilized distilled water for 8 to 10 times so as to remove the traces of mercuric chloride and were pre-soaked in distilled water for 4 h at $25\pm1^\circ\text{C}$.

The experiments were designed to have the following four sets (**Figure 2**)

(i) **Control or untreated** - In this set, some of the presoaked seeds were kept in distilled water for 12 h at $25\pm1^\circ\text{C}$.

(ii) **Treated with sodium azide (NaN_3 ; pH 6.0) alone** - In this set, some of the presoaked seeds were treated with freshly prepared five different aqueous concentrations of sodium azide (0.0004M, 0.0008M, 0.0010M, 0.0020M and 0.0040M) for a period of 12 h at $25\pm1^\circ\text{C}$.

(iii) **Post-treated with Amla fruit extract** - In this set, some of the treated seeds (seeds treated with each concentration level of sodium azide) were post-treated with freshly prepared two different concentrations of aqueous Amla fruit extract (0.50% and 1.00%), separately for a period of 12 h at $25\pm1^\circ\text{C}$.

For each set, 30 seeds were used which were replicated thrice. Seeds of all the experimental sets were transferred to the sterilized petriplates containing two layers of moist filter papers. Mutagenic effects of sodium azide and the antimutagenic effects of Amla were assessed by petriplate experiments as follows.

PETRIPLATE EXPERIMENTS

In petriplate experiments, efficacy of NaN_3 alone and antimutagenic properties of the amla plant extract was evaluated on the basis of three parameters, namely germination index (GI), percent abnormal seedling and seedling vigour index (SVI). Data were regularly recorded for a continuous period of 15 days. The formulae used for analysis of the data on the basis of parameters are as under.

$$\text{I. Germination index (GI)} = \frac{\text{Number of seeds germinated}}{\text{Total number of seeds}} \times 100$$

$$\text{II. Percent abnormal seedling} = \frac{\text{Total Number of variants}}{\text{Total number of seedlings survived}} \times 100$$

$$\text{III. Seedling vigor index (SVI)} = \frac{\text{Germination percentage} \times \text{Seedling height}}{100}$$

Fig 2

DISCUSSION

Apart from demonstrating mutagenic potentiality, a good number of workers such as Khan et al. (1994), Adamu and Aliyu (2007) & Al-Qurainy and Khan (2009) have also assessed the toxic effects of NaN_3 in various plant species using different parameters like germination index, seedling vigour index and morphological abnormalities as also done in the present work which also corroborate present investigation. Further, a few reports are available on the impacts of antimutagens like vitamin-C, butylated hydroxyanisole, butylated hydroxytoluene, gallic acid, propyl-gallate and α -tocopherol against mutagenicity of dimethyl-nitro-amine, sterigmatocystin, propiolactone, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-hydroxy-2-acetylaminofluorene, 3-methyl-cholanthrene, benzo(a)pyrene, cyclophosphamide and mitomycin-C

in prokaryotic systems (bacterial test) as well as cultured mouse cells and carcinogenic actions in human beings [Guttanplan (1977), Lo et al. (1978), Wattenberg (1978a), Shamberger et al. (1979), Rosin and Stich (1979), Thorgeirsson et al. (1980), Rosin et al. (1980) and Waters et al. (1998)]. Aqueous extract of *Embllica officinalis* fruit protected mice against the chromosome damaging effects of the well known carcinogen 3, 4 benzo-pyrene (Nandi et al. 1997). Their findings also support present investigation pertaining to the antimutagenic effects of natural antimutagen, i.e., fruit extract of Amla in *C. arietinum* using germination index, seedling vigour index and morphological abnormalities as parameters. Since natural antimutagens are known to be very rich in vitamin-C (ascorbic acid) therefore in present work, fruit extract of Amla which are rich in vitamin-C have been tested as antimutagens against toxic effects of NaN_3 . Cancer accounts for over 7 million deaths per year all over the world and in human beings 35% of the cancer cases occur due to dietary carcinogens therefore higher intake of fruits having antimutagenic properties can reduce the percentage of cancer. Observations pertaining to the antimutagenic properties of Amla fruit extract recorded in the present work clearly suggest that these fruits should be consumed by human beings to reduce cancer risks. Further, it is suggested that attempts should be made to test the antitoxic / antimutagenic properties of various fruit extracts of different plant species having several ingredients such as ascorbic acid (vitamin-C), phenols and polyphenols as their major components because antimutagenic/antitoxic properties of these components have also been well demonstrated by Kahl (1984), Wall et al. (1988 a and b), Sangwan et al. (1998), Waters et al. (1998) and Nagpal et al. (2000).

CONCLUSION

After completion of present work which encompasses assessment of antimutagenic properties of Amla fruit extract against mutagenicity of sodium azide (NaN_3 ; pH 6.0), in *Cicer arietinum L.*, it was found that –

* Sodium azide is a potent mutagen with respect to the *Cicer arietinum L.* which belongs to family - Leguminosae (Fabaceae).

* Amla (*Embllica officinalis* Gaertn.) possess significant antimutagenic properties against NaN_3 induced toxicity in *C. arietinum*.

- * Antimutagenic properties of Amla barring some exceptions are dose dependent, i.e., at higher concentration levels of fruit extract these plants exhibit higher antimutagenicity.
- * Regular consumption of fruits of these plant species may prevent human beings against many diseases such as cancer, caused by genotoxic chemicals present in our environment.
- * Amla has been experimentally shown to possess antimutagenic effects. It can help prevent or reduce mutations in DNA. This is partly due to its ability to scavenge free radicals and reduce oxidative stress, which can damage DNA and lead to mutations.

REFERENCES

- * Adamu, A.K. and Aliyu, H. (2007). Morphological effects of sodium azide on tomato (*Lycopersicon esculentum* Mill.). *Sci. World J.*, 2 (4): 9-12.
- * Al-Qurainy, F. and Khan, S. (2009). Mutagenic effects of sodium azide and its application in crop improvement. *World Applied Sciences Journal*, 6 (12): 1589-1601.
- * Bhattacharya, S. (2011). Natural antimutagens: a review. *Research Journal of Medicinal Plant*, 5 (2): 116-126.
- * Clarke, C.H. and Shankel, D.M. (1975). Antimutagenesis in microbial systems. *Bacteriological Reviews*, 39(1): 33-53.
- * De Flora, S., Izzotti, A., Rancerath, K., Randerath, E. and Lertas, J. (1996). DNA adducts and chromo degenerative disease-pathogenic relevance and implications in prevents mediome. *Mutation Research*, 366: 197-238.
- * Guttenplan, J.B. (1977). Inhibition by L-ascorbate of bacterial mutagenesis induced by two N-nitroso compounds. *Nature*, 268: 368-370.
- * Hartl, D.L., Davis, R.H. and Weller, S.J. (1994). *Study guide for genetics*. 3rd Edn. Jones and Barlett Publishers, New York.
- * Kada, T. (1983). Environmental and biological factors suppressing induction of mutations (in Japanese). *Toxicology Forum*, 6: 580-589.
- * Kada, T. and Kanematsu, N. (1978). Reduction of N-methyl-N' nitro-N-nitrosoguanidine-induced mutations by cobalt chloride in *Escherichia coli*. *Proceedings of Japan Academy*, 54: 234-237.
- * Kada, T., Inoue, T. and Namiki, M. (1982). In: *Environmental mutagenesis, carcinogenesis and plant biology* (J. Klekowski Jr. Ed.). Praeger, New York 1: 133-151.
- * Kahl, R. (1984). Synthetic antioxidants: biochemical action and interference with radiation, toxic compounds, chemical mutagens and chemical carcinogens. *Toxicology*, 33: 185-228.
- * Kaur, M. and Singh, N. (2005). Studies on functional, thermal and pasting properties of flours from different chickpea (*Cicer arietinum L.*) cultivars. *Food Chemistry*, 91: 403-411.
- * Khan, S., Siddique, B.A. and Nadeem, M. (1994). Variation in quantitative characters of mungbean after seed treatment with DES. *Advanced Plant Sciences*, 7(1): 41-45.
- * Lo, L.W. and Stich, H.F. (1978). The use of short-term test to measure the preventive action of reducing agents on formation and activation of carcinogenic nitroso compounds. *Mutation Research*, 57: 57-67.
- * Middleton, J.E. and Kandaswami, C. (1993). Plant flavonoid modulation of immune and inflammatory cell functions: Nutrition and immunology. In: *Human nutrition a comprehensive Treatise*, Klurfeld, D.M., Alfin-Slater, E.D., Kritchevsky, R.B., Gen, D. (Eds.) Plenum Press, New York : 239-266.
- * Nagpal, A., Grover, I.S., Arora, S. Kaur, H. (2000). Anticlastogenic effects of acid methanol fraction of *Terminalia arjuna* Roxb. in root tip cells of *Allium cepa* L., *Environmental Protection*. Thukral, A.K. and Virk, G.S. eds Scientific Publishers, Jodhpur, India, 275-282.
- * Nandi, G., Talukder, G. and Sharma, A. (1997). Dietary chemoprevention of clastogenic effects of 3,4-benzo(a) pyrene by *Emblica officinalis* Gaertn. fruit extract. *British Journal of Cancer* 76 (10): 1279-1283.
- * Novick, A. and Szilard, L. (1952). Antimutagens. *Nature*, 170: 926-927.
- * Rosin, M.P. and Stich, H. F. (1979). Assessment of the use of the *Salmonella* mutagenesis assay to determine the influence of antioxidants on carcinogen induced mutagenesis. *International Journal of Cancer*, 23: 722-727.
- * Rosin, M.P., Peterson, A.R. and Stich, H.F. (1980). The effect of ascorbate on 3-methylchol

anthrene-induced transformation in C3H/10T1/2 mouse-embryo fibroblast cell cultures. *Mutation Research*, 72: 533-537.

* Sangwan, N.S., Shanker, S., Sangwan, R.S. and Kumar, S. (1998). Plant derived products as antimutagens. *Phytotherapy Research*, 12 (6): 389-399.

* Shamberger, R.J., Corletti, C.L., Beaman, K.D. and Kasten, B.L. (1979). Antioxidants reduce the mutagenic effects of malonaldehyde and β -propiolactone part 9th. *Antioxidants and cancer. Mutation Research*, 66: 349-355.

* Thorgeirsson, S.S., Sasaki, S. and Wirth, P.J. (1980). Effects of ascorbic acid on the in vitro mutagenicity and in vivo covalent binding of N-hydroxy-2-acetylaminofluorene in the rat. *Mutation Research*, 70: 395-398.

* Wall, M.E., Wani, M.C., Manikumar, G., Abraham, P., Taylor, H., Hughes, T.J., Werner J. and Givney, R. Mc. (1988a). Plant antimutagenic agents. 2. Flavonoids. *J. Nat. Prod.*, 51: 1084-1091.

* Waters, M.D., Stack, H.F., Jackson, M.A. and Hayatsu, H. (1998). Antimutagenesis: present and future trends. *Proceedings of the 5th International conference on mechanisms of antimutagenesis and anticarcinogenesis. Mutation Research. Fundamental and Molecular Mechanism of Mutagenesis*, 402 (1-2):129-138.

* Wattenberg, L.W. (1978a). Inhibition of chemical carcinogenesis. *Journal of National Cancer Institute*, 60: 11-18.

SWADESHI VIGYAN PATRIKA

Guidelines for Authors

Aims & Objectives

Swadeshi Science Movement (SSM) also called Vigyan Bharti is a premier non-profit organisation devoted to disseminate the scientific advancement, founded by Professor K.I. Vasu & his associates from IISc, Bengaluru on 7th Nov. 1982. The foundation principle is for the development of Swadeshi Vigyan, integrating traditional & modern sciences catering to national needs and society. Swadeshi Science Movement of India, Delhi “SSM’D” (Vigyan Bharti, Delhi) since it’s inception in the capital from 1994 as an independent popular Science forum has organized numerous National conferences, workshops, Vigyan Melas, lectures and symposia using National languages for facilitating interaction amongst researchers and foster exchange & dissemination of the Innovations in Science, Engineering and Technology. Furthering our broader national perspectives in line with the founding principles of the society to adopt and develop Bharatiya languages as media of Science, Engineering & Technology (SET) at all levels without opposing English and also to meet the need of the hour at the time of COVID-19 global crisis, SSM’D has been in the process of bringing out a new Bi- annual “Online publication”: Swadeshi Vigyan Patrika (SVP) to bring advances in all aspects of Swadeshi Vigyan- Indigenous Science for national development to the mass, thus building a more informed scientific society towards attaining self-sufficiency and national re-construction.

Original thoughts, gems of knowledge and experience of experts & researchers are invited on topics related to:

- Innovative Indigenous Inter-Disciplinary Research & Scientific Efforts and Eco-friendly Technology with human face in Physical/material & Engineering Sciences, Chemistry, Electrochemistry, Botany, Zoology, Mathematics, Biotechnology, IT & Science journalism, Health care, Water, Agriculture, Geology, Forensic Sciences, Meteorology, Environmental, Space & Nuclear Sciences and IPR Leveraging.
- Innovations in the Path of Traditional Knowledge, Ayurvigyan, Yog, Indian System of medicines, Go-vigyan, Uses of Herbal in Modern Therapy, Applied JyotishVigyan & Sankalp Shakti Vidya (Spiritual Science)
- Innovations in the Path of Sustainable Consumption/Living/Development with Special Focus on Rural Development through Utilization/Management of Natural Resources vis-à-vis New Economic Environment

It will be our supplementary endeavour to address the innovative human resource of the grass root level people including artisans, craftsmen, farmers and tribals; promote, preserve & modernize their skills and make them economically strong through inputs of modern science & technology integrated with the traditional knowledge who are in fact the true reflection of the spiritual and the material facets of our culture and civilization. We will also undertake the challenge to connect a vast reservoir of innovations by the invisible informal sector to the visible formal/established sector that are exposed to modern science and innovate in a formal way, towards making Bharat innovative and a global leader in sustainable technologies. SVP will be a biannual publication initially but it may become a quarterly later depending on the response from the contributors.

Preparation of Manuscript texts

Manuscripts for original articles/papers should be submitted online either in Hindi / Regional languages preferably or in English of about 3000 words in MS Word & Krutidev 10 font preferably or in any other fonts like Unicode, etc for Hindi matter to the Editor in vigyanpatrika@swadeshivigyan.org and swadeshivigyan@swadeshivigyan.org.

Fonts for the title, authors and text should be 18, 14 and 12, respectively. The Figures/Tables caption should be as : eg. Fig. 1 Farming system of Nagaland.

A declaration from the author(s) will be procured stating that the submitted manuscript is neither published nor submitted elsewhere for publication .

The manuscript should be prepared in a concise form and presented in double space and it's title page should enlist the title useful in indexing, full names of authors, institutional addresses, email contact of the author for correspondences with asterisk * mark with the name and brief credentials of the main author like awards, Honours,etc. in 2 lines. Abstract should not exceed 200 words and should indicate the important content of the paper highlighting scope and main findings. Prior-art and literature survey should be confined within the framework of the submitted manuscript. Conclusions should draw significant output of the manuscript with a clear explanation of it's importance & relevance for the society.

References may be cited as follows

Normal Paper

D.P. Bhatt, T. Twomey, W. Plieth, R. Schumacher and H. Meyer; Inhibition of the underpotential deposition of copper on single crystal platinum surfaces, J. Electroanal. Chem. & Interfac. Electrochem. 322 (1992) 279

Papers in Conferences

A and B; Title of the paper; In the Proc. of 4th European Workshop on the Electrodeposition of metals, Freudenstadt, May 8-10 (1990), p. ...

Books

Wikander 2000, p. 400 Wikander, Orjan (2000), "The Water Mill", in Wikander Orjan, Handbook of Ancient Water Technology, Technology and change in History 2, Leiden: Brill, pp. 371-400, ISBN 90-04-11123-9

Swadeshi Science Movement of India, Delhi

(also called as Vigyan Bharti, Delhi)

Registered under Societies Act XXI of 1860, Reg. no. S-28690

1. Name: _____

2. Date of Birth: _____

3. Address: _____

4. Occupation: _____

5. Educational Qualification: _____

6. Professional Experience: _____

7. Member/Life Member/Patron: _____

Cheque/D.D. No. _____ INR _____

Name of The Bank _____

Branch & Address: _____

Date & Signature

:- Bank Account Details :-

Account Name : Swadeshi Science Movement of India

Account No. : SB/10964472430 IFSC Code : SBIN0001282

Please prepare the subscription fee as draft/local cheque in favour of
“SWADESHI SCIENCE MOVEMENT OF INDIA, DELHI” and send to
Dr. D P Bhatt, President, Vigyan Bharati-Delhi, C-376, P3 Pocket, Greater Noida 201310

Annual Member (Individual) : INR 250/- per year

Life Member (Individual) : INR 2000/- ONCE

Life Member (Students/Skilled technicians/

Grassroot Innovators from informal sector): INR 1000/- ONCE

Annual Member (Corporate/Institutional) :

Life Member (Corporate/Institutional) :

PATRON : INR 30,000/- ONCE

(Photocopy of this form can be used)

FEW SUCCESS STORIES OF SWADESHI SCIENCE MOVEMENT OF INDIA

(Registered under the Societies Registration Act XXI, 1860 of Govt. of NCT of Delhi: Reg. no. S-28690)

1. स्वदेशी विज्ञान की राष्ट्रीय संगोष्ठी में वैज्ञानिकों ने कहा: पश्चिमी विज्ञान को सर्वोच्च मानने की मानसिकता त्यागें— A Report in पात्रजन्य 30 November 1997, p. 15; Book on Electroplating and Metal Finishing, 1997, Editor: Dr. D P Bhatt, Shipra Publications, Delhi, pp. 1-309; National Conference and Refresher Course on Industrial Metal Finishing: A Report in J. Sci. Ind. Res. SCI-TECH UPDATE 57 (1998) p. 215-19
2. गांवों में हाई टेकनालॉजी पढ़ूँचाना कठिन नहीं – A Report in HINDUSTAN daily, New Delhi edn. by Vinod Varshney, 13 Jan. 1997.
3. Conferred with (i) “CLEAN UP THE EARTH AWARD” by the International Association of Educators for World Peace, USA and associates in recognizing the contribution of SSM'D in the areas of Environmental Education, Training, Pollution monitoring & Green activities, New Delhi (1998) and (ii) International felicitation in the 6th World Environment Congress in the capital by Dr. A R Kidwai, His Excellency then Hon'ble Governor, Haryana (1999)
4. Swadeshi Science Movement of India, Delhi (Vigyan Bharati,Delhi): A Report in J. Sci. Ind. Res. SCI-TECH UPDATE 59 (2000) p.177-79
5. Vigyan Bharati Pradeepika, Vol 6, 2000, Simplex Printing Press, Jabalpur; National Conference on Swadeshi Vigyan – A Report in CSIR News 51 (30 April 2001), p. 89-92
6. National Symposium on Ancient Indian SET interfaced with Modern Knowledge - A Report in Ind. J. Traditional knowledge 1 (2002) p. 75-78; CSIR News 51 (30 April 2001), p. 89-92 : It's highlight published in INDIA TODAY, 27 Feb. 2002, p. 71
7. जन जन से जुड़े स्वदेशी विज्ञान— A Report in पात्रजन्य चैत्र कृष्ण त, वि. सं. २०६०, १४ मार्च २००४, पृ.10; 3rd Vigyan Bharati Conference in New Delhi... – Reports in Organiser, Delhi, Vol. LV (34) 7 March 2004, p. 15 & CSIR News 54 (10) 2004, p. 157; अंध विश्वासों से उबारने हेतु जन मानस में विज्ञान एवं प्रौद्योगिकी के प्रति रुचि जाग्रत करना आवश्यक - A Report in Weekly EKJAY, Ujjain, 24 January – 1 March 2004, p. 2
8. भारतीय विज्ञान, अभियांत्रिकी एवं प्रौद्योगिकी में अन्वेषणों पर राष्ट्रीय सम्मेलन 2006 - A Report in CSIR Samachar Vol. 24 (4), 2007, p. 50-54; “विज्ञान” स्वरूप और सर्वजन हिताय दृष्टि देने की आवश्यकता - A Report in Vigyan Pragati Oct. 2009, p. 17-18 by Irfan Human.
9. विज्ञान भारती पहुंची गुप्तकाशी - A Report of Godly support to the Village Victims of Uttarakhand National Tragedy 2013 in Shilpkar Times, New Delhi edn., 3-9 April 2015; A Report of 3rd National Conference on Innovations 2013 in CSIR News 63 (7&8), 2013, p.85-86
10. ग्रामीण आवास पर राष्ट्रीय सम्मेलन – Reports in CSIR Samachar Vol. 5(6), 2017, p. 81-83; Vigyan Pragati June 2017, p. 28-31
11. भारतीय वैज्ञानिक एवं औद्योगिक अनुसंधान पत्रिका के अनेक विशेषांकों में प्रकाशित, अतिथि संपादक: देवेन्द्र प्रकाश भट्ट ; Vol. 21(1) 2013; Vol. 19(2) 2011; Vol. 18(1) 2010 ; Vol. 15(1) & Vol. 15(2) 2007; Vol. 12(1) & Vol. 12(2) 2004 and in the commemorative issues of Journal of Environmental Nanotechnology Vol. 2, 2013; Vol. 6-2,2017
12. Navati Felicitation & Tribute to Prof. K I Vasu : “Workshop on the Interface of Science & Society 2018”, NPL - SSM'D MEMOIR 2018
13. To commemorate the occasion of 150 years celebration of Mahatma Gandhi Jayanti, organised Nukkad Road Shows jointly with NIET, Greater Noida on cleanliness drive in G.B. Nagar, U.P. (November 2019)
14. During the Covid 19 time, released the Swadeshi Vigyan Patrika 2020 inaugural issue through Prof. Praveen Kumar, IIT Roorkee (then Director, NIT Delhi) in the presence of Invited Guest, Dr. Anjan Ray, Director, CSIR-IIP Dehradun.